Регуляция содержания глюкозы в крови гормонами

Гормоны, повышающие концентра­цию глюкозы в крови, называются гипергликемическими, к ним относятся: глюкагон, катехоламины, глюкокортикосте-роиды и соматотропин (соматотропный гормон). Гормоны, снижающие концентрацию глюкозы в крови, называются гипогликемическими. Гипогликемическим гормоном является инсулин. Гиперг­ликемические гормоны повышают глюкозу крови за счет усиления распада гликогена печени и стимуляции ГНГ. Инсулин снижает глюкозу крови благо­даря: 1) увеличению проницаемости клеточных мембран для глюкозы; 2) ингибированию процессов, поставляющих глюкозу (ГНГ, распад гликогена печени); 3) усилению процессов, использующих глюкозу (гликолиз, синтез гликогена, ПФП. синтез жира).

Патологии углеводного обмена

Среди патологий углеводного обмена можно выделить такие, причиной ко­торых является наследственная или приобретенная недостаточность ферментов. К таким болезням относятся дисахаридозы, гликогенозы, агликоге­нозы, галактоземия.

Дисахаридозы вызваны недостаточностью дисахаридаз. При этом возникает непереносимость отдельных видов углеводов, например лактозы. Дисахариды подвергаются действию ферментов микрофлоры кишечника. При этом образуются кислоты и газы. Симптомами дисахаридозов являются метеоризм, понос.

Гликогенозы. В этом случае нарушен распад гликогена. Гликоген накапли­вается в клетках в больших количествах, что может привести к их разруше­нию. Клинические симптомы: увеличение размеров печени, мышечная сла­бость, гипогликемия натощак. Известно несколько типов гликогенозов. Они могут быть вызваны недостаточностью глюкозо-6-фосфатазы, фосфорилазы или g-ами-лазы.

Агликогенозы вызываются недостаточностью ферментов, участвующих в синтезе гликогена. В результате нарушается синтез гликогена и снижается его содержание в клетках. Симптомы: резкая гипогликемия натощак, особенно после ночного перерыва в кормлении. Гипогликемия приводит к отставанию в умственном развитии. Больные погибают в детском возрасте.

Галактоземия возникает при отсутствии гена, отвечающего за синтез уридил­трансферазы – ключевого фермента унификации галактозы. В результате в тканях накапливается галактоза и галактозо-1-фосфат, вызывая повреждение головного мозга и печени, а также помутнение хрусталика (катаракту). Свободная галактоза у таких больных в больших количествах обнаруживается в крови. Для лечения используется диета без молока и молочных продуктов.

Другим видом патологий углеводного обмена является нарушение го­меостаза глюкозы, которое характеризуется гипер- или гипогликемией.

Гипергликемия — это повышение концентрации глюкозы в крови. При­чиныгипергликемии:1) алиментарная (пищевая); 2) сахарный диабет (возникает при недостатке инсулина); 3) патология ЦНС (менингит, энцефа­лит); 4) стресс; 5) избыток гипергликемических гормонов; 6) повреждение островков поджелудочной железы (панкреатит, кровоизлияния). Невысокая и кратковременная гипер-гликемия не опасна. Длительная гипергликемия приводит к истощению запасов инсулина (что является одной из причин сахарного диабета), потере воды тканями, поступлению ее в кровь, увеличению кровяного давления, увеличе­нию диуреза. Гипергликемия в 50-60 ммоль/л может привести к гиперосмо­лярной коме.

Длительная гипергликемия приводит к неферментативному гликозили­рованию белков плазмы крови, эритроцитов, кровеносных сосудов, почеч­ных канальцев, нейронов, хрусталика, коллагена. Это изме­няет их свойства, что является причиной тяжелых осложнений: тканевых гипоксий, склерозирования сосудов, катаракты, почечной недостаточности, нарушения нервной проводимости, снижения срока жизни эритроцитов и т.д.

Гипогликемияэто снижение концентрации глюкозы в крови.

Причины гипогликемии: 1) пищевая; 2) усиленное использование глюкозы (при тяжелой мышечной ра­боте); 3) патология ЖКТ (воспалительные процессы); 4) патология печени; 5) пато­логия ЦНС; 6) недостаток гипергликемических гормонов; 7) избыток инсулина (опухоль поджелудочной железы, передозировка инсулина).Гипогликемия очень опасна, так как приводит к гипогликемической коме.

Раздел 3. Лабораторно-практические занятия

Дата добавления: 2015-07-13 ; Просмотров: 651 ; Нарушение авторских прав? ;

источник

Нервная регуляция концентрации глюкозы в крови выражается в положительном влиянии n.vagus на секрецию инсулина и тормозящем влиянии на этот процесс симпатической иннервации. Кроме этого, выделение адреналина в кровь подвержено симпатическим влияниям.

Основными факторами гормональной регуляции являются глюкагон, адреналин, глюкокортикоиды, соматотропный гормон с одной стороны, и инсулин с другой. Все гормоны, кроме инсулина, влияя на печень, увеличивают гликемию.

Уменьшение концентрации глюкозы в крови инсулином достигается следующими путями:

  • переход глюкозы в клетки – активация белков-транспортеров ГлюТ 4 на цитоплазматической мембране,
  • вовлечение глюкозы в гликолиз – повышение синтеза глюкокиназы – фермента, получившего название «ловушка для глюкозы», стимуляция синтеза других ключевых ферментов гликолиза – фосфофруктокиназы , пируваткиназы ,
  • увеличение синтеза гликогена – активация гликогенсинтазы и стимуляция ее синтеза, что облегчает превращение излишков глюкозы в гликоген,
  • активация пентозофосфатного пути – индукция синтеза глюкозо-6-фосфат-дегидрогеназы и 6-фосфоглюконатдегидрогеназы ,
  • усиление липогенеза – вовлечение глюкозы в синтез триацилглицеролов или фосфолипидов.

Многие ткани совершенно нечувствительны к действию инсулина, их называют инсулиннезависимыми. К ним относятся нервная ткань, стекловидное тело, хрусталик, сетчатка, клубочковые клетки почек, эндотелиоциты, семенники и эритроциты.

Глюкагон повышает содержание глюкозы крови:

  • увеличивая мобилизацию гликогена через активацию гликогенфосфорилазы ,
  • стимулируя глюконеогенез – повышение работы ферментов пируваткарбоксилазы , фосфоенолпируват-карбоксикиназы , фруктозо-1,6-дифосфатазы .

Адреналин вызывает гипергликемию:

  • активируя мобилизацию гликогена – стимуляция гликогенфосфорилазы ,

Глюкокортикоиды повышают глюкозу крови

  • за счет подавления перехода глюкозы в клетку,
  • стимулируя глюконеогенез – увеличивают синтез ферментов пируваткарбоксилазы , фосфоенолпируват-карбоксикиназы , фруктозо-1,6-дифосфатазы .

В таблице кратко сформулированы основные аспекты гормональных влияний:

Инсулин
  • Повышение ГлюТ 4-зависимого транспорта глюкозы в клетки
  • Усиление синтеза гликогена
  • Активация ПФП
  • Активация гликолиза и ЦТК
Адреналин
  • Активация гликогенолиза в печени

Глюкагон

  • Активация гликогенолиза в печени
  • Стимуляция глюконеогенеза
  • Усиление глюконеогенеза
  • Уменьшение проницаемости мембран для глюкозы

В качестве итога вышесказанному представлен рисунок:

источник

О состоянии обмена углеводов можно судить по содержанию сахара в крови. У здорового человека в крови поддерживается постоянная концентрация глюкозы 70-120 мг%. После приема пищи, содержащей углеводы, концентрация глюкозы в крови возрастает примерно до 150мг % и остается на этом уровне около 2 часов, а затем возвращается к норме. Содержание глюкозы в крови — одна из самых важных констант жидкой внутренней среды организма. Ведущая роль в поддержании этой константы на постоянном уровне благодаря идущим там процессам гликогенеза и гликогенолиза принадлежит печени. Длительное повышение содержания глюкозы в крови — гипергликемия стимулирует выделение в кровь инсулина. Инсулин снижаетсодержание глюкозы в крови после возрастания ее концентрации (гипергликемии).

У здорового человека в период между приемами пищи нормальное содержание глюкозы в крови поддерживается путем распада гликогена в печени с образованием свободной глюкозы — процессом гликогенолиза. При снижении сахара крови — гипогликемии, длящейся более длительное время, в кровь поступает глюкагон — гормон, выделяемыйподжелудочной железой. Инсулин, гормон поджелудочной железы, стимулирует процессы синтеза гликогена в печени — гликогенез, поглощение глюкозы клетками других тканей организма, подавляет образование глюкозы, т.е. процессы глюконеогенеза. Инсулин — главный гормон. Этот гормон обладает специфическим действием: он действует исключительно на процессы гликогенолиза, ускоряя образование глюкозы.

При голодании, длящемся более 24 часов, запасы гликогена в печени истощаются. В прессы регуляции включаются гормоны коры надпочечника — глюкокортикоиды. Глюкокортикоиды, во-первых, усиливают глюконеогенез в печени; во-вторых, обеспечивает процессы глюконеогенеза субстратом, усиливая распад белков в тканях организма, они предоставляют для глюконеогенеза углеродсодержащий субстрат. К гормонам, которые обеспечивают повышение сахара крови, относятся адреналин и гормон роста.

Адреналин — гормон мозгового вещества надпочечника. Он усиливает процессы перехода гликогена в глюкозу. Гормон роста, во-первых, подавляет использование глюкозы клетками тканей; во-вторых, при резком и длительном снижении сахара крови стимулирует распад жиров и образование из них углеводов.

Дыхание.Все живые организмы дышат, т. е. поглощают кислород и выделяют углекислый газ и воду. При этом происходит разложение органических веществ и выделение энергии, необходимой для жизни каждой клетки, всего растения.

В действительности этот процесс многоступенчатый. Он состоит из целого ряда последовательно идущих окислительно-восста-новительных реакций. В качестве органических веществ, необходимых для дыхания, служат в основном углеводы, белки и жиры. Типичным соединением, окисляемым в процессе дыхания, является глюкоза. Энергетически наиболее выгодным для дыхания веществом является жир. 1 г жира при окислении до СО2 и Н2О дает 9,2 ккал, белки — 5,7 ккал, углеводы — 4 ккал. Процесс превращения исходного органического вещества до более простых и затем до СО2 и Н2О требует большого числа различных ферментов.

В процессе фотосинтеза растения синтезируют углеводы, которые транс­портируются из листьев в другие органы. На свету и в темноте клетки растения «дышат», окисляя углеводы молекулярным кислородом с образованием СО2 и воды. При этом освобождается большое количество свободной энергии:

С6Н12О6 + 6О2 = 6СО2 + 6Н2О + энергия;
G = -2882 кДж/моль (-686 ккал/моль)

Эта формула в общем виде отражает чрезвычайно сложный, а главное, кон­тролируемый процесс, который условно можно разбить на три этапа: гликолиз, цикл трикарбоновых кислот и окислительное фосфорилирование в дыхательной цепи (рис. 1).

Гликолиз и цикл трикарбоновых кислот — это биохимические пути окисле­ния глюкозы, протекающие соответственно в цитозоле и матриксе митохонд­рий. В биохимических реакциях синтезируется небольшое количество АТФ, и главный их результат — образование соединений с высоким восстановитель­ным потенциалом — НАДН и ФАДН2. На заключительном этапе восстановительные эквиваленты окисляются в электрон-транспортной цепи, локализованной во внутренней мембране митохондрий. Перенос электрона в цепи за­вершается восстановлением кислорода до воды. В процессе электронного транспорта на мембране образуется электрохимический протонный градиент ΔµἨ, энергия которого используется для синтеза АТФ из АДФ и Фн. Процесс, в котором работа дыхательной цепи сопряжена с синтезом АТФ, получил на­звание окислительного фосфорилирования. Именно в этом процессе синтезиру­ется основная масса АТФ, образуемого при дыхании.

И у растений, и у животных дыхание выполняет три основные функции. Во-первых, освобождаемая при окислении углеводов энергия преобразуется в конвертируемые формы клеточной энергии — ΔµἨи АТФ. Вторая, не менее важная функция — снабжение клетки метаболитами, которые образуются в ходе окисления глюкозы и используются в разнообразных биосинтезах. Третья функция связана с термогенезом, т. е. рассеиванием энергии в виде тепла. Про­цесс дыхания принципиально сходен у животных и растений, но у последних имеет свои особенности. Все вместе они отражают пластичность растительного метаболизма и связаны с функционированием, наряду с основными, альтер­нативных ферментов и реакций. Наличие альтернативных путей расширяет адап­тивные возможности растений, но усложняет (с точки зрения исследователя) систему регуляции метаболических процессов.

Рис. 1. Основные этапы дыхания

Окисление глюкозы в процессе гликолиза сопровождается восстановлением двух молекул НАД + , синтезом двух молекул АТФ и завершается образованием двух молекул пирувата. В митохондриях пируват подвергается полному окислению до СО2 в реакциях, катализируемых пируватдегидрогеназным комплексом (ПДК) и ферментами цикла трикарбоновых кислот (ЦТК). В этих процессах образуются 4НАДН, 1ФАДН2, а также одна молекула АТФ. Восстановительные эквива­ленты окисляются, отдавая электроны в электрон-транспортную цепь, локализованную во внутренней митохондриальной мембране. Электронный транспорт приводит к восстановлению кислорода до воды и сопряжен с синтезом основной массы АТФ в процессе окислительного фосфорилирования.

Основные события, связанные с дыханием, происходят в митохондриях. Растительные митохондрии, как правило, сферической или цилиндрической формы, их число может сильно варьировать в зависимости от метаболической активности клетки. Две мембраны, наружная и внутренняя, делят митохонд­рию на два функциональных компартмента — межмембранное пространство и матрикс (рис. 2).

Рис. 2. Структура митохондрий
Особые белки, называемые поринами, образуют в наружной мембране крупные гидрофильные каналы, или поры, через которые в меж­мембранное пространство из цитозоля свободно могут проникать соединения с молекулярной массой не более 10 кДа. Это практически все основные мета­болиты клетки. Внутренняя мембрана образует многочисленные складки, кри-сты, которые увеличивают ее поверхность. Во внутреннюю мембрану интегри­рованы электрон-транспортная цепь (ЭТЦ) и АТФ-синтаза. В отличие от дру­гих клеточных мембран внутренняя мембрана митохондрий обогащена белком (75 %) и содержит особый фосфолипид (дифосфатидилглицерол) — кардиолипин. Она пропускает газы, воду и небольшие липофильные молекулы, но непроницаема для заряженных молекул и ионов, что является обязательным условием ее функционирования как сопрягающей мембраны. Однако в мемб­ране есть белки — транспортеры, с помощью которых возможен обмен мета­болитами между матриксом и цитозолем . Матрикс, т. е. окруженное внутренней мембраной пространство, содержит ферменты цикла трикарбоновых кислот.

Читайте также:  Глюкофаж лонг и дюфастон

ГЛЮКОЗА — ОСНОВНОЙ СУБСТРАТ ДЫХАНИЯ У РАСТЕНИЙ
Основным субстратом дыхания у растений являются глюкоза и ее произ­водные, хотя в особых случаях дыхание могут поддерживать белки и жиры, запасенные в семенах. Глюкоза образуется в клетках растений при гидролизе крахмала и сахарозы — продуктов фотосинтеза. Крахмал представляет собой смесь двух полисахаридов — амилозы и амилопектина. Молекулы амилозы — это длинные, неразветвленные цепи α-D-глюкопиранозных остатков, соеди­ненных гликозидными α(1→4)-связями. Молекулы амилопектина также представлены цепями α -D-глюкопиранозных остатков, которые в точке ветвления образуют а(1→6)-связь. Крахмал как запасный полисахарид накапливается в хлоропластах и пластидах гетеротрофных тканей. Некоторые растения — топи­намбур (Heliantus tuberosus), георгин (Dahlia sp.) в качестве запасных углеводов могут использовать инулин и гемицеллюлозы. Сахароза — это дисахарид, обра­зованный остатками глюкозы и фруктозы. Она синтезируется в цитозоле, из фотосинтезирующих клеток по апопласту листа и сосудам флоэмы транспор­тируется в другие органы растения.
Крахмал расщепляется до моносахаридов при участии ряда ферментов (α- и β-амилазы, α-1,6-глюкозидазы, крахмалфосфорилазы и др.) с образованием D-глюкозы или D-глюкозо-1-фосфата. Распад сахарозы может идти при обра­щении реакций ее синтеза, но в основном происходит в результате гидролиза при участии фермента инвертазы:
сахароза + Н2О → фруктоза + глюкоза

В геноме таких растений, как томат (Lycopersicon esculentum), кукуруза (Zea mays), арабидопсис (Arabidopsis thaliana), морковь (Dancus carota), обнаружено целое семейство ядерных генов, кодирующих разные изоформы инвертазы. Например, у моркови кислые инвертазы (оптимум рН 4,5 — 5,0) в пяти разных изоформах присутствуют в вакуоли и клеточной стенке. В цитозоле есть нейт­ральная инвертаза (оптимум рН 7,0—8,0), которая также может иметь несколько изоформ. Таким образом, у растений гидролиз сахарозы может идти в разных клеточных компартментах и контролируется сложным образом через актив­ность инвертаз, обладающих разными свойствами.

Брожение- процесс анаэробного расщепления органических веществ, преимущественно углеводов, происходящий под влиянием микроорганизмов или выделенных из них ферментов. В ходе брожение в результате сопряженных окислительно-восстановительных реакций освобождается энергия, необходимая для жизнедеятельности микроорганизмов, и образуются химические соединения, которые микроорганизмы используют для биосинтеза аминокислот, белков, органических кислот, жиров и др. компонентов тела. Одновременно накапливаются конечные продукты брожение. В зависимости от их характера различают брожение спиртовое, молочнокислое, маслянокислое, пропионовокислое, ацетоно-бутиловое, ацетоно-этиловое и др. виды. Характер брожение, его интенсивность, количественные соотношения конечных продуктов, а также направление брожениезависят от особенностей его возбудителя и условий, при которых брожение протекает (pH, аэрация, субстрат и др.).

Спиртовое Брожение. В 1836 французский учёный Каньяр де ла Тур установил, что спиртовое брожение связано с ростом и размножением дрожжей. Химическое уравнение спиртового брожение: C6H12O6 ® 2C2H5OH + 2CO2 было дано французскими химиками А. Лавуазье (1789) и Ж. Гей-Люссаком (1815). Л. Пастер пришёл к выводу (1857), что спиртовое брожение могут вызывать только живые дрожжи в анаэробных условиях («брожение — это жизнь без воздуха»). В противовес этому немецкий учёный Ю. Либих упорно настаивал на том, что брожение происходит вне живой клетки. На возможность бесклеточного спиртового брожение впервые (1871) указала русский врач-биохимик М. М. Манассеина.

Немецкий химик Э. Бухнер в 1897, отжав под большим давлением дрожжи, растёртые с кварцевым песком, получил бесклеточный сок, сбраживающий сахар с образованием спирта иCO2. При нагревании до 50°C и выше сок утрачивал бродильные свойства. Всё это указывало на ферментативную природу активного начала, содержащегося в дрожжевом соке. Русский химик Л. А. Иванов обнаружил (1905), что добавленные к дрожжевому соку фосфаты в несколько раз повышают скорость брожение.

Исследования отечественных биохимиков А. И. Лебедева, С. П. Костычева, Я. О. Парнаса и немецких биохимиков К. Нейберга, Г. Эмбдена, О. Мейергофа и др. подтвердили, что фосфорная кислота участвует в важнейших этапах спиртового брожение

В дальнейшем многие исследователи детально изучили ферментативную природу и механизм спиртового брожение (см. схему). Первая реакция превращения глюкозы при спиртовом брожение — присоединение к глюкозе под влиянием фермента глюкокиназы остатка фосфорной кислоты отаденозинтрифосфорной кислоты (АТФ, см. Аденозинфосфорные кислоты). При этом образуются аденозиндифосфорная кислота (АДФ) и глюкозо-6-фосфорная кислотата. Последняя под действием фермента глюкозофосфати-зомеразы превращается в фруктозо-6-фосфорную кислоту, которая, получая от новой молекулы АТФ (при участии фермента фосфофруктокиназы) ещё один остаток фосфорной кислоты, превращается в фруктозо-1,6-дифосфорную кислоту. (Эта и следующая реакции, обозначенные встречными стрелками, обратимы, т. е. их направление зависит от условий — концентрации фермента, pH и др.) Под влиянием фермента кетозо-1-фосфатальдолазы фруктозо-1,6-дифосфорная кислота расщепляется на глицеринальдегидфосфорную и диоксиацетонфосфорную кислоты которые могут превращаться друг в друга под действием фермента триозофосфатизомеразы. Глицеринальдегидфосфорная кислота, присоединяя молекулу неорганической фосфорной кислоты и окисляясь под действием фермента дегидрогеназы фосфоглицеринальдегида, активной группой которого у дрожжей является никотинамидадениндинуклеотид (НАД), превращается в 1,3-дифосфоглицериновую кислоту. Молекула диоксиацетонфосфорной кислоты под действием триозофосфатизомеразы даёт вторую молекулу глицеринальдегидфосфорной кислоты, также подвергающуюся окислению до 1,3-дифосфоглицериновой кислоты; последняя, отдавая АДФ (под действием фермента фосфоглицераткиназы) один остаток фосфорной кислоты, превращается в З-фосфоглицериновую кислоту, которая под действием фермента фосфоглицеро-мутазы превращается в 2-фосфоглицериновую кислоту, а она под влиянием фермента фосфопируват-гидратазы — в фосфоенол-пировиноградную кислоту. Последняя при участии фермента пируваткиназы передаёт остаток фосфорнойкислоты молекуле АДФ, в результате чего образуется молекула АТФ и молекула енолпировиноградной кислоты, которая весьма нестойка и переходит в пировиноградную кислоту. Эта кислота при участии имеющегося в дрожжах фермента пируватдекарбоксилазы расщепляется на уксусный альдегид и двуокись углерода. Уксусный альдегид, реагируя с образовавшейся при окислении глицеринальдегидфосфорной кислоты восстановленной формой никотинамидадениндинуклеотида (НАД-Н), при участии фермента алкогольдегидрогеназы превращается в этиловый спирт. Суммарно уравнение спиртового брожение может быть представлено в следующем виде:

Т. о., при сбраживании 1 моля глюкозы образуются 2 моля этилового спирта, 2 моля CO2, а также в результате фосфорилирования 2 молей АДФ образуются 2 моля АТФ. Термодинамические расчёты показывают, что при спиртовом брожение превращение 1 моля глюкозы может сопровождаться уменьшением свободной энергии примерно на 210 кдж (50 000 кал), т. е. энергия, аккумулированная в 1 моле этилового спирта, на 210 кдж (50 000 кал) меньше энергии 1 моля глюкозы. При образовании 1 моля АТФ (макроэргических — богатых энергией фосфатных соединений) используется 42 кдж (10 000 кал). Следовательно, значительная часть энергии, освобождающейся при спиртовом брожение, запасается в виде АТФ, обеспечивающей разнообразные энергетические потребности дрожжевых клеток. Такое же биологическое значение имеет процесс брожение и у др. микроорганизмов. При полном сгорании 1 моля глюкозы (с образованием CO2 и H2O) изменение свободной энергии достигает 2,87 Мдж (686 000 кал). Иначе говоря, дрожжевая клетка использует лишь 7% энергии глюкозы. Это показывает малую эффективность анаэробных процессов по сравнению с процессами, идущими в присутствии кислорода. При наличии кислорода спиртовое брожение угнетается или прекращается и дрожжи получают энергию для жизнедеятельности в процессе дыхания. Наблюдается тесная связь между брожением и дыханием микроорганизмов, растений и животных. Ферменты, участвующие в спиртовом брожение, имеются также в тканях животных и растений. Во многих случаях первые этапы расщепления сахаров, вплоть до образования пировиноградной кислоты, — общие для брожение и дыхания. Большее значение процесс анаэробного распада глюкозы имеет и при сокращении мышц , первые этапы этого процесса также сходны с начальными реакциями спиртового брожение.

Сбраживание углеводов (глюкозы, ферментативных гидролизатов крахмала, кислотных гидролизатов древесины) используется во многих отраслях промышленности: для получения этилового спирта, глицерина и др. технических и пищевых продуктов. На спиртовом Брожение основаны приготовление теста в хлебопекарной промышленности, виноделие и пивоварение.

Молочнокислое Брожение. Молочнокислые бактерии подразделяют на 2 группы — гомоферментативные и гетероферментативные. Гомоферментативные бактерии (например, Lactobacillus delbrückii) расщепляют моносахариды с образованием двух молекул молочной кислоты в соответствии с суммарным уравнением:

Гетероферментативные бактерии (например, Bacterium lactis aerogenes) ведут сбраживание с образованием молочной кислоты, уксусной кислоты, этилового спирта и CO2, а также образуют небольшое количество ароматических. веществ — диацетила, эфиров и т.д.

При молочнокислом брожение превращение углеводов, особенно на первых этапах, близко к реакциям спиртового брожение, за исключением декарбоксилирования пировиноградной кислоты, которая восстанавливается до молочной кислоты за счёт водорода, получаемого от НАД-Н. Гомоферментативное молочнокислое брожение используется для получения молочной кислоты, при изготовлении различных кислых молочных продуктов, хлеба и в силосовании кормов в сельском хозяйстве. Гетероферментативное молочнокислое брожение происходит при консервировании различных плодов и овощей путём квашения.

Маслянокислое Брожение. Сбраживание углеводов с преимущественным образованием масляной кислоты производят многие анаэробные бактерии, относящиеся к роду Clostridium. Первые этапы расщепления углеводов при маслянокислом Брожение аналогичны соответстветственным этапам спиртового брожение, вплоть до образования пировиноградной кислоты, из которой при маслянокислом брожение образуется ацетил-кофермент A (CH3CO-KoA). Ацетил-KoA может служить предшественником масляной кислоты, подвергаясь следующим превращениям:

Маслянокислое Брожение применялось для получения масляной кислоты из крахмала.

Ацетоно-бутиловое брожение бактерии Clostridium acetobutylicum сбраживают углеводы с преим. образованием бутилового спирта (CH3CH2CH2CH2OH) и ацетона (CH3COCH3). При этом образуются также в сравнительно небольших количествах водород, CO2, уксусная, масляная кислоты, этиловый спирт. Первые этапы расщепления углеводов те же, что и при спиртовом брожении. Бутиловый спирт образуется путём восстановления масляной кислоты:

Ацетон же образуется декарбоксилированием ацетоуксусной кислоты, которая получается в результате конденсации двух молекул уксусной кислоты. Исследованиями В. Н. Шапошникова показано, что ацетоно-бутиловое брожение (как и ряд др., например пропионовокислое, маслянокислое) в опытах с растущей культурой происходит в две фазы. В первую фазу брожение параллельно с нарастанием биомассы накапливаются уксусная и масляная кислоты; во вторую фазу образуются преимущественно ацетон и бутиловый спирт. При ацетоно-бутиловом брожение сбраживаются моносахариды, дисахариды и полисахариды — крахмал, инсулин, но не сбраживаются клетчатка и гемицеллюлоза. Ацетоно-бутиловое брожение использовалось для промышленного получения бутилового спирта и ацетона, применяемых в химической и лакокрасочной промышленности.
Сбраживание белков. Некоторые бактерии из рода Clostridium — гнилостные анаэробы — способны сбраживать не только углеводы, но и аминокислоты. Эти бактерии более приспособлены к использованию белков, расщепляемых ими при помощи протеолитических ферментов до аминокислот, которые затем подвергаются брожение. Процесс сбраживания белков имеет значение в круговороте веществ в природе.

Пропионовокислое Брожение.
Основные продукты пропионовокислого брожение, вызываемого несколькими видами бактерий из рода Propionibacterium, — пропионовая (CH3CH2OH) и уксусная кислоты и CO2. Химизм пропионовокислого брожение сильно изменяется в зависимости от условий. Это, по-видимому, объясняется способностью пропионовых бактерий перестраивать обмен веществ, например в зависимости от аэрации. При доступе кислорода они ведут окислительный процесс, а в его отсутствии расщепляют гексозы путём брожение. Пропионовые бактерии способны фиксировать CO2, при этом из пировиноградной к-ты и CO2 образуется щавелевоуксусная к-та, превращающаяся в янтарную к-ту, из которой декарбоксилированием образуется пропионовая к-та:

Читайте также:  Таблетки от повышенного давления при повышенном сахаре

Существуют брожение, которые сопровождаются и восстановительными процессами. Примером такого «окислительного» брожение служит лимоннокислое брожение. Многие плесневые грибы сбраживают сахара с образованием лимонной кислоты. Наиболее активные штаммы Aspergillus niger превращают до 90% потребленного сахара в лимонную кислоту. Значительная часть лимонной кислоты, используемой в пищевой промышленности, производится микробиологическим путём — глубинным и поверхностным культивированием плесневых грибов.

Иногда по традиции и чисто окислительные процессы, осуществляемые микроорганизмами, называется брожение. Примерами таких процессов могут служить уксуснокислое и глюконовокислое брожение.

Уксуснокислое Брожение. Бактерии, относящиеся к роду Acetobacter, окисляют этиловый спирт в уксусную кислоту в соответствии с суммарной реакцией:

Промежуточное соединение при окислении спирта в уксусную кислоту — уксусный альдегид. Многие уксуснокислые бактерии, кроме окисления спирта в уксусную кислоту, осуществляют окисление глюкозы в глюконовую и кетоглюконовую кислоты.

Глюконовокислое Брожение осуществляют и некоторые плесневые грибы, способные окислять альдегидную группу глюкозы, превращая последнюю в глюконовую кислоту:

Кальциевая соль глюконовой кислоты служит хорошим источником кальция для людей и животных.

источник

Поддержание оптимальной концентрации глюкозы в крови — результат действия множества факторов, сочетание слаженной работы многих систем организма. Ведущая роль в поддержании динамического равновесия между процессами образования и утилизации глюкозы принадлежит гормональной регуляции.

В среднем уровень глюкозы в крови здорового человека, в зависимости от давности употребления пищи, колеблется от 2,7 до 8,3 (норма натощак 3,3 — 5,5) ммоль/л, однако сразу после приёма пищи концентрация резко возрастает на короткое время.

Две группы гормонов противоположно влияют на концентрацию глюкозы в крови:

единственный гипогликемический гормон — инсулин

и гипергликемические гормоны (такие как глюкагон, гормон роста и гормоны надпочечников), которые повышают содержание глюкозы в крови

Когда уровень глюкозы снижается ниже нормального физиологического значения, секреция инсулина бета-клетками снижается, но в норме никогда не прекращается. Если же уровень глюкозы падает до опасного уровня, высвобождаются так называемые контринсулиновые (гипергликемические) гормоны (наиболее известны глюкокортикоиды и глюкагон — продукт секреции альфа-клеток панкреатических островков), которые вызывают высвобождение глюкозы в кровь. Адреналин и другие гормоны стресса сильно подавляют выделение инсулина в кровь.

Точность и эффективность работы этого сложного механизма является непременным условием нормальной работы всего организма, здоровья. Длительное повышенное содержание глюкозы в крови (гипергликемия) является главным симптомом и патогенетической сущностью сахарного диабета. Гипогликемия — понижение содержания глюкозы в крови — часто имеет ещё более серьёзные последствия. Так, экстремальное падение уровня глюкозы может быть чревато развитием гипогликемической комы и смертью.

Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: Студент — человек, постоянно откладывающий неизбежность. 10175 — | 7214 — или читать все.

85.95.189.26 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам | Обратная связь.

Отключите adBlock!
и обновите страницу (F5)

очень нужно

источник

Контроль метаболизма углеводов в организме человека осуществляется единой нейрогуморальной системой. Однако в ее работе можно выделить три группы механизма:

1. Контроль с помощью нервных механизмов. Возбуждение того или иного отдела ЦНС далее передача импульса по нервным стволам, далее выделение медиаторов и далее воздействие на обмен углеводов в клетке.

2. Контроль с помощью нейрогормональных механизмов. Возбуждение подкорковых метаболических центров, выделение гормонов гипоталамуса, выделение гормонов гипофиза, выделение гормонов периферических желез внутренней секреции и наконец воздействие гормонов на метаболизм углеводов в клетке.

3. Контроль с помощью метаболитно-гуморальных механизмов. Например повышение концентрации глюкозы в крови приводит к повышению продукции инсулина b клетками, а далее следует активация процессов усвоения глюкозы клетками.

Одной из важнейших задач системы регуляции обмена углеводов является поддержание концентрации глюкозы в крови на определенном уровне (в пределах 3,3-5,5 млмоль/л). Эта концентрация обеспечивает нормальное снабжение клеток различных органов и тканей этим моносахаридом, который служит для них источником энергии и источником пластического материала.

Постоянная концентрация глюкозы в крови — есть результат очень сложного баланса процессов поступления глюкозы в кровь и процессов ее утилизации в органах и тканях.

Важную роль в поддержании концентрации глюкозы играет эндокринная система человека. Целый ряд гормонов повышает содержание глюкозы в крови: глюкагон, адреналин, соматотропин (СТГ), йодированные тиронины, глюкокортикоиды (кортизол).

Глюкагон повышает содержание глюкозы в крови за счет стимуляции процессов мобилизации гликогена в печени. Он стимулирует процесс глюконеогенеза, за счет повышения активности одного из фермента глюконеогенеза: фруктоза-1,6-бисфосфотазу.

Глюкагон выделяется a-клетками островков Лангерганса при снижении концентрации глюкозы в крови. Поскольку ответная реакция на повышение содержания глюкагона в крови базируется на изменении активности уже имеющихся в клетках ферментов, наблюдается быстрое повышение концентрации глюкозы в крови. Глюкагон не оказывает не оказывает влияние на скорость расщепления гликогена в мышцах, поскольку мышцы не имеют рецепторов к этому гормону.

Адреналин. Он секретируется в кровь мозговым вещ-вом надпочечников в экстремальных ситуациях.

В первую очередь адреналин стимулирует расщепление гликогена в мышцах и таким образом обеспечивает миоциты энергетическим топливом. Однако в мышцах нет фермента глюкоза-6-фосфотазы, поэтому при расщеплении гликогена в мышцах свободной глюкозы образуется и она не поступает в кровь, т.е. за счет усиления скорости распада гликогена поддерживается энергетика самих мышц. В то же время адреналин способен ускорять расщепление гликогена в печени за счет активации фосфорилазы. Образующаяся глюкоза поступает из гепатоцитов в кровь, что приводит к повышению ее концентрации, поэтому все ситуации сопровождающиеся выбросом адреналина или введением адреналина естественно сопровождается повышением концентрации глюкозы в крови. Это повышение содержания глюкозы развивается очень быстро, поскольку как и в случае глюкагона обусловлено повышением активности имеющихся в гепатоцитах ферментов.

Кортизол. Как и другие глюкокортикоиды вызывает повышение содержания глюкозы в крови за счет 2 основных эффектов:

Во-первых он тормозит поступление глюкозы из крови в клетки ряда перефирических тканей( мышечная соединительная )

Во-вторых кортизол является основным стимулятором глюконеогенеза. Причем стимуляция глюконеогенеза является главным механизмом ответственным за увеличение концентрации глюкозы при выбросе кортизола или при его введении.

Эффект кортизола развивается медленно содержание глюкозы в крови начинает повышаться через 4-6 часов после введения или выброса и достигает максимума примерно через сутки. Повышение содержания глюкозы в крови при действии кортизола сопровождается одновременно увеличением содержания гликогена в печени. В то же время при введении глюкагона содержание гликогена в печени снижается.

Соматотропный гормон гипофиза так же в целом вызывает повышение содержания глюкозы в крови.

Но следует помнить, что введение этого гормона вызывает 2-х фазный ответ:

1 в течении первой четверти часа содержание глюкозы в крови снижается,

2 а затем развивается продолжительное повышение ее уровня в крови.

Механизм этой ответной реакции окончательно не выяснен. Предполагают, что на первом этапе происходит небольшое нарастание содержание инсулина в крови. За счет чего и происходит снижение содержания глюкозы. В более отдаленные периоды повышение содержания глюкозы в крови является следствием нескольких эффектов.

Во-первых это уменьшение поступления глюкозы в некоторые ткани (мышцы).

Во-вторых повышение поступления в кровь глюкагона из поджелудочной железы.

В-третьих уменьшение скорости окисления глюкозы в клетках в результате повышенного поступления в клетки жирных кислот (более высокое энергетическое топливо). Жир. кис. ингибируют пируваткиназу. Длительное введение соматотропного гормона приводит к развитию сахарного диабета.

Тироксин (Т4, тетрайодтиранин). Известно, что при гипертириозе окисление глюкозы идет с нормальной или повышенной скоростью. Содержание глюкозы натощак повышенно, одновременно у больных снижено содержание гликогена в печени.

Инсулин — гормон снижающий содержание глюкозы в крови. Выделяется в кровь b-клетками в ответ на повышение содержание глюкозы в крови. Снижение содержания глюкозы в крови обусловлено тремя группами эффектов:

1. Инсулин повышает проницаемость клеточных мембран для глюкозы за счет активации белка-переносчика и способствует переходу глюкозы из крови и межклеточной жидкости в клетки.

2. Инсулин улучшает усвоение глюкозы клетками

а) стимулирует фосфорилирование глюкозы и ее окислительный распад

б) ускоряет синтез гликогена

в) превращение глюкозы в триглицериды

3. Тормозит процессы глюконеогенеза и расщепление гликогена в гепатоцитах до глюкозы.

Ответная реакция на введение или выброс инсулина развивается быстро. В физиологическом плане гормоны глюкагон и инсулин не являются антагонистами. Глюкагон обеспечивает перевод резервного гликогена в глюкозу, а инсулин обеспечивает поступление этой глюкозы из крови в клетки перефирических тканей и ее последующую утилизацию в клетках.

Почему их нельзя считать антагонистами?

В суммарном плане влияние на концентрацию глюкозы их можно назвать антагонистами один гипергликемический, другой гипогликемический, однако в физиологическом плане их нельзя назвать антагонистами, поскольку один за счет распада гликогена увеличивает концентрацию глюкозы, а второй (инсулин) обеспечивает проникновение этой глюкозы и ее последующую утилизацию.

Синтез гликозаминокликанов стимулируется тестостероном и соматотропным гормоном, причем под действием соматотропина в печени синтезируется пептид (инсулиноподобный фактор роста). Именно пептид является истинным стимулятором синтеза гетерополисахаридов межклеточного вещества соединительной ткани. Синтез гликозаминогликанов тормозят глюкокортикоиды. Замечено, что в местах инъекции кортизола количество межклеточного вещества в соединительной ткани уменьшается.

Изменения в крови и появление в моче

Повышение показателя имеет место при диабете, гипертиреозе, аденокортицизме (гиперфункции коры надпочечников), гиперпитуитаризме, иногда при заболеваниях печени.

Снижение показателя имеет место при гиперин-сулинизме, недостаточности функции надпочечников, гипопитуитаризме при печеночной недостаточности (иногда), функциональной гипогликемии и при приеме гипогликемических препаратов.

Глюкоза в нормальной моче имеется в виде следов и не превышает 0,02 %, что обычными качественными методами не определяется. Появление сахара в моче (глюкозурия) может быть в физиологических условиях обусловлено пищей с больших содержанием углеводов, после лекарств, например диуретин, кофеин, кортикостроиды. Патологическая глюкозурия чаще всего бывает при сахарном диабете, реже при тиреотоксикозе, синдроме Иценко — Кушинга и т. д.

Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: Да какие ж вы математики, если запаролиться нормально не можете. 8254 — | 7221 — или читать все.

85.95.189.26 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам | Обратная связь.

Отключите adBlock!
и обновите страницу (F5)

очень нужно

источник

Нервная регуляция концентрации глюкозы в крови выражается в положительном влиянии n.vagus на секрецию инсулина и тормозящем влиянии на этот процесс симпатической иннервации. Кроме этого, выделение адреналина в кровь подвержено симпатическим влияниям.

Основными факторами гормональной регуляции являются глюкагон, адреналин,

глюкокортикоиды, соматотропный гормон с одной стороны, и инсулин с другой. Инсу-

лин является единственным гормоном организма, действие которого нацелено на снижение уровня глюкозы крови. При его влиянии глюкозу поглощают мышцы и жировая ткань. Все остальные гормоны увеличивают гликемию, влияя на печень.

Повышение ГлюТ 4-зависимого транспорта

Активация гликогенолиза в печени

Усиление синтеза гликогена

Активация гликогенолиза в печени

Активация гликолиза и ЦТК

Уменьшение проницаемости мембран для

Снижение концентрации глюкозы крови инсулином достигается следующими путями:

Читайте также:  Понижение глюкозы в крови наблюдается при

переход глюкозы в клетки – активация белков-транспортеров ГлюТ 4 на цитоплаз-

вовлечение глюкозы в гликолиз – повышение синтеза глюкокиназы – фермента,

получившего название «ловушка для глюкозы», стимуляция синтеза других ключевых

ферментов гликолиза – фосфофруктокиназы, пируваткиназы,

o увеличение синтеза гликогена – активация гликогенсинтазы и стимуляция ее синтеза, что облегчает превращение излишков глюкозы в гликоген,

o активация пентозофосфатного пути – индукция синтеза глюкозо-6-фосфат-

дегидрогеназы и 6-фосфоглюконатдегидрогеназы,

o усиление липогенеза – вовлечение глюкозы в синтез триацилглицеролов (см «Липиды», «Синтез триацилглицеролов»).

Многие ткани совершенно нечувствительны к действию инсулина, их называют инсулиннезависимыми . К ним относятся нервная ткань, стекловидное тело, хрусталик, сетчатка, клубочковые клетки почек, эндотелиоциты, семенники и эритроциты.

Глюкагон повышает содержание глюкозы крови:

o увеличивая мобилизацию гликогена через активацию гликогенфосфорилазы,

o стимулируя глюконеогенез – повышение работы ферментов пируваткарбоксилазы, фосфоенолпируват-карбоксикиназы, фруктозо-1,6-дифосфатазы.

Адреналин вызывает гипергликемию:

o активируя мобилизацию гликогена – стимуляция гликогенфосфорилазы,

Глюкокортикоиды повышают глюкозу крови o за счет подавления перехода глюкозы в клетку,

o стимулируя глюконеогенез – увеличивают синтез ферментов пируваткарбоксилазы, фосфоенолпируват-карбоксикиназы, фруктозо-1,6-дифосфатазы.

источник

Гормональная регуляция энергетического метаболизма

Действие гормонов, влияющих на энергетический метаболизм можно увидеть при определении некоторых биохимических показателей. Например, концентрации глюкозы в крови. Гормоны делят на:

1. Повышающие уровень глюкозы в крови;

2. Понижающие уровень глюкозы в крови.

Ко второй группе относится только ИНСУЛИН.

Также гормоны можно разделить на ГОРМОНЫ ПРЯМОГО ДЕЙСТВИЯ на энергетический метаболизм и ГОРМОНЫ КОСВЕННОГО ДЕЙСТВИЯ.

Основные механизмы действия инсулина:

1. Инсулин повышает проницаемость плазматических мембран для глюкозы. Этот эффект инсулина является главным лимитирующим звеном метаболизма углеводов в клетках.

2. Инсулин снимает тормозящее действие глюкокортикостероидов на гексокиназу.

3. На генетическом уровне инсулин стимулирует биосинтез ферментов метаболизма углеводов, в том числе ключевых ферментов.

4. Инсулин в клетках жировой ткани ингибирует триглицеридлипазу — ключевой фермент распада жиров.

Регуляция секреции инсулина в кровь происходит с участием нейро-рефлекторных механизмов. В стенках кровеносных сосудов есть особые хеморецепторы, чувствительные к глюкозе. Повышение концентрации глюкозы в крови вызывает рефлекторную секркцию инсулина в кровь, глюкоза проникает в клетки и ее концентрация в крови снижается.

Остальные гормоны вызывают повышение концентрации глюкозы в крови.

Относится к белково-пептидным гормонам. Обладает мембранным типом взаимодействия с клеткой-мишенью. Эффект оказывает через аденилатциклазную систему.

1. Вызывает повышение активности гликоген-фосфорилазы. В результате ускоряется распад гликогена. Так как глюкагон оказывает эффект только в печени то можно сказать, что он «гонит глюкозу из печени».

2. Понижает активность гликоген-синтетазы, замедляя синтез гликогена.

3. Активирует липазу в жировых депо.

Имеет рецепторы во многих тканях, а механизмы действия у него такие же, как у глюкагона.

1. Ускоряет распад гликогена.

2. Замедляет синтез гликогена.

Относятся к стероидным гормонам, поэтому обладают внутриклеточным типом взаимодействия с клеткой-мишенью. Проникая в клетку-мишень, они взаимодействуют с клеточным рецептором и обладают следующими эффектами:

1. Ингибируют гексокиназу — таким образом они замедляют утилизацию глюкозы. В результате концентрация глюкозы в крови возрастает.

2. Данные гормоны обеспечивают процесс гликонеогенеза субстратами.

3. На генетическом уровне усиливают биосинтез ферментов катаболизма белков.

Гормоны косвенного действия

1. Усиливает выделение глюкагона, поэтому наблюдается ускорение распада гликогена.

2. Вызывает активацию липолиза, поэтому способствует утилизации жира в качестве источника энергии.

ЙОДСОДЕРЖАЩИЕ ГОРМОНЫ ЩИТОВИДНОЙ ЖЕЛЕЗЫ.

Это гормоны — производные аминокислоты тирозина. Обладают внутриклеточным типом взаимодействия с клетками-мишенями. Рецептор Т3/Т4 находится в ядре клетки. Поэтому эти гормоны усиливают биосинтез белков на уровне транскрипции. Среди этих белков — окислительные ферменты, в частности разнообразные дегидрогеназы. Кроме того, они стимулируют синтез АТФаз, т.е. ферментов, которые разрушают АТФ. Для процессов биоокисления требуются субстраты — продукты окисления углеводов и жиров. Поэтому при увеличении продукции этих гормонов наблюдается усиление распада углеводов и жиров. Гиперфункция щитовидной железы называется Базедова болезнь или тиреотоксикоз. Один из симптомов этого заболевания — понижение массы тела. Для этого заболевания характерно повышение температуры тела. В опытах in vitro наблюдается разобщение митохондриального окисления и окислительного фосфорилирования при высоких дозах этих гормонов.

Регуляция углеводного обмена осуществляется при участии очень сложных механизмов, которые могут оказывать влияние на индуцирование или подавление синтеза различных ферментов углеводного обмена либо способствовать активации или торможению их действия. Инсулин, катехоламины, глюкагон, соматотропный и стероидные гормоны оказывают различное, но очень выраженное влияние на разные процессы углеводного обмена. Так, например, инсулин способствует накоплению в печени и мышцах гликогена, активируя фермент гликогенсинтетазу, и подавляет гликогенолиз и глюконеогенез. Антагонист инсулина — глюкагон стимулирует гликогенолиз. Адреналин, стимулируя действие аденилатциклазы, оказывает влияние на весь каскад реакций фосфоролиза. Гонадотропные гормоны активируют гликогенолиз в плаценте. Глюкокортикоидные гормоны стимулируют процесс глюконеогенеза. Соматотропный гормон оказывает влияние на активность ферментов пентозофосфатного пути и снижает утилизацию глюкозы периферическими тканями. В регуляции глюконеогенеза принимают участие ацетил-КоА и восстановленный никотинамидадениндинуклеотид. Повышение содержания жирных кислот в плазме крови тормозит активность ключевых ферментов гликолиза. В регуляции ферментативных реакций углеводного обмена важную цель играют ионы Са2+, непосредственно или при участии гормонов, часто в связи с особым Са2+-связывающим белком — кальмодулином. В регуляции активности многих ферментов большое значение имеют процессы их фосфорилирования — дефосфорилирования. В организме существует прямая связь между углеводным обменом и обменом белков, липидов и минеральных веществ.

Пути регуляции метаболизма углеводов крайне разнообразны. На любых уровнях организации живого организма обмен углеводов регулируется факторами, влияющими на активность ферментов, участвующих в реакциях углеводного обмена. К этим факторам относятся концентрация субстратов, содержание продуктов (метаболитов) отдельных реакций, кислородный режим, температура, проницаемость биологических мембран, концентрация коферментов, необходимых для отдельных реакций, и т.д

Современная схема пентозофосфатного пути окисления углеводов, отражающая его связь с гликолизом (по Херсу).

1 — транскетолаза; 2 — трансальдолаза; 3 — альдолаза; 4 — фосфофруктокиназа; 5 — фруктозо-1,6-бисфосфатаза; 6 — гексокиназа; 7 — глюкозофосфатизомераза; 8 — триозофосфатизомераза; 9 -глюкозо-6-фосфатдегидрогеназа; 10 — 6-фосфоглюконолактоназа; 11 — 6-фосфоглюконатдегид-рогеназа; 12 — изомераза; 13 — эпимераза; 14 — лактатдегидрогеназа.

Десять реакций гликолиза протекают в цитозоле.

Гликолитический путь играет двоякую роль: приводит к генерированию АТФ в результате распада глюкозы, и он же поставляет строительные блоки для синтеза клеточных компонентов. Реакции гликолитического пути в физиологических условиях легкообратимы, кроме реакций, катализируемых гексокиназой, фосфофруктокиназой и пируват-киназой. Фосфофруктокиназа – наиболее важный регуляторный элемент (фермент) в процессе гликолиза, ингибируется высокими концентрациями АТФ и цитрата и активируется АМФ.

Скорость цикла трикарбоновых кислот зависит от потребности в АТФ. Высокий энергетический заряд клетки понижает активность цитратсинтазы, изоцитратдегидрогеназы и α-кетоглутаратдегидрогеназы. Еще один важный регуляторный момент – необратимое образование ацетил-КоА из пи-рувата. В результате пентозофосфатного пути происходит генерирование НАДФН и рибозо-5-фосфата в цитозоле. НАДФН участвует в восстановительных биосинтезах, а рибозо-5-фосфат используется в синтезах РНК, ДНК и нуклеотидных коферментов.

Взаимодействие гликолитического и пентозофосфатного путей обеспечивает возможность постоянного приспособления концентраций НАДФН, АТФ и строительных блоков, например рибозо-5-фосфата и пирувата, для удовлетворения потребностей клеток.

Наконец, глюконеогенез и гликолиз регулируются реципрокно, так что, если активность одного из путей относительно понижается, то активность другого пути повышается.

У человека на всех стадиях синтеза и распада углеводов регуляция углеводного обмена осуществляется при участии ЦНС и гормонов.

Например, установлено, что концентрация глюкозы (норма 4,4 – 6,1 ммоль/л) в крови ниже 3,3–3,4 ммоль/л (60–70 мг/100 мл) приводит к рефлекторному возбуждению высших метаболических центров, расположенных в гипоталамусе. В регуляции углеводного обмена особая роль принадлежит высшему отделу ЦНС – коре большого мозга. Наряду с ЦНС важное влияние на содержание глюкозы оказывают гормональные факторы, т.е. регуляции уровня глюкозы в крови осуществляется ЦНС через ряд эндокринных желез .

Нормальный уровень глюкозы в крови составляет 3,5 – 5,55 ммоль.

Гипогликемия– это снижение уровня глюкозы в крови. Различают физиологическую и патологическую гипогликемию.

Причины физиологической гипогликемии:

1) физический труд (повышенные затраты)

2) беременность и лактация

Причины патологической гипогликемии:

1) нарушение депонирования глюкозы в печени

2) нарушение всасывания углеводов в ЖКТ

3) нарушение мобилизации гликогена

6) приём в– ганглиоблокаторов

Гипергликемия– это повышение уровня глюкозы в крови.

2) избыток контринсумерных гормонов, которые препятствуют утилизации глюкозы мышечной тканью и одновременно стимулируют глюконеогенез

5) расстройство мозгового кровообращения

6) заболевания печени воспалительного или дегенеративного характера

Уровень глюкозы в крови является одним из гомеостатических параметров. Регуляция уровня глюкозы в крови – это сложный комплекс механизмов, обеспечивающий постоянство энергетического гомеостаза для наиболее жизненно важных органов (мозг, эритроциты). Глюкоза – главный и едва не единственный субстрат энергетического обмена. Существует два механизма регуляции:

Постоянный (через гормональное влияние)

Срочный механизм срабатывает практически всегда при действии на организм любых экстремальных факторов. Он осуществляется по классической модели (через зрительный анализатор воспринимается информация об опасности. Возбуждение из одного очага в коре распространяется по всем зонам коры. Затем возбуждение передаётся на гипоталамус, где находится центр симпатической нервной системы. По спинному мозгу импульсы поступают в симпатический ствол и по постганглионарным волокнам к коре надпочечников. При этом происходит выброс адреналина, который запускает аденилатциклазный механизм мобилизации гликогена).

Срочный механизм поддерживает стабильную гликемию на протяжении 24 часов. В дальнейшем запас гликогена уменьшается и уже спустя 15 – 16 часов подключается постоянный механизм, в основе которого лежит глюконеогенез. После истощения запасов гликогена, возбуждённая кора продолжает посылать импульсы в гипоталамус. Отсюда выделяются либерины, которые с током крови заносятся переднюю долю гипофиза, которая, в свою очередь, синтезирует в кровоток СТГ, АКТГ, ТТГ, которые в свою очередь стимулируют выброс трийодтиронина и тиреотропина. Эти гормоны стимулируют липолиз. Тиреотропные гормоны активируют протеолиз, в результате чего образуются свободные аминокислоты, которые как и продукты липолиза используются как субстраты глюконеогенеза и цикла трикарбоновых кислот.

В ответ на повышение уровня глюкозы в крови, происходит выброс инсулина, однако вследствие того, что жирные кислоты и выделяемые гормоны выключают гликолиз в мышечной ткани, потребление глюкозы мышцами не происходит, вся глюкоза сохраняется для мозга и эритроцитов.

В условиях длительного воздействия отрицательных факторов на организм (постоянный стресс) может возникнуть дефицит инсулина, что является одной из причин сахарного диабета.

Повышение уровня глюкозы (гипергликемия):

Физиологический подъем уровня глюкозы – психоэмоциональный стресс, усиленная физическая нагрузка, «боязнь белого халата»);

Болезни поджелудочной железы, характеризующиеся стойким или временным снижением продукции инсулина (панкреатит, гемохроматоз, муковисцидоз, онкозаболевания железы)

Заболевания эндокринных органов (акромегалия и гигантизм, синдром Иценко-Кушинга, феохромацитома, тиреотоксикоз, соматостатинома)

Прием лекарственных препаратов: тиазиды, кофеин, эстрогены, глюкокортикостероиды.

Понижение уровня глюкозы (гипогликемия):

Длительное голодание, запой, усиленная физическая нагрузка, лихорадка;

Нарушение со стороны ЖКТ: перистальтическая дисфункция, мальабсорбция, гастроэнтеростома, постгастроэктомия;

Нарушения со стороны поджелудочной железы: онкозаболевания, дефицит глюкагона(поражение альфа-клеток островков Лангенгарска);

Нарушения со стороны эндокринных органов: адреногенитальный синдром, болезнь Аддисона, гипотиреоз, гипопитуитаризм;

Нарушение в ферментативной системе: гликогенозы, нарушение толерантности к фруктозе, галактоземия;

Нарушение печеночных функций: гепатиты различной этиологии, гемохроматоз, цирроз;

Онкозаболевания: печени, желудка, надпочечников, фибросаркома;

Прием лекарственных средств: анаболические стероиды, психоактивные вещества, неселективные бета-адреноблокаторы. Передозировка: салицилаты, алкоголь, мышьяк, хлороформ, антигистаминные препараты.

источник