Регуляция уровня сахара и кальция в крови

Кальцитонин оказывает очень слабое влияние на концентрацию кальция в плазме у взрослых людей. Существуют две причины слабого влияния кальцитонина на уровень кальция в плазме.

Во-первых, небольшое начальное снижение концентрации кальция в плазме, вызываемое кальцитонином, через несколько часов приводит к мощной стимуляции паратгормона, которая в несколько раз превышает эффекты кальцитонина. Если щитовидную железу удаляют и кальцитонин больше не продуцируется, изменения в концентрации ионов кальция в крови на протяжении длительного периода обнаружить не удается, что вновь демонстрирует превосходящие контролирующие влияния ПТГ.

Во-вторых, у взрослых суточные колебания скорости образования и рассасывания костей невелики, и даже если скорость рассасывания на фоне кальцитонина снижается, это оказывает слишком слабое влияние на изменение концентрации кальция в крови. Влияния кальцитонина у детей более существенны в связи с тем, что реструктуризация костей у детей совершается быстро и количество вымываемого и депонируемого в костях кальция в этом возрасте превышает 5 г/сут, что в 5-10 раз больше, чем суммарное количество кальция во всей внеклеточной жидкости. При некоторых заболеваниях костей (например, болезни Педжета, при которой остеокластическая активность резко ускоряется) кальцитонин активнее влияет на уменьшение рассасывания костей.

Иногда количество кальция, вымываемого из костей в жидкости организма, превышает 0,3 г/ч. Например, в случае диареи ежедневно несколько граммов кальция может выделиться в кишечный сок, пройти через желудочно-кишечный тракт и выйти с калом.

Напротив, после введения большого количества кальция, особенно на фоне избыточного количества витамина D, возможно поступление кальция более 0,3 г/ч. Эти цифры сопоставимы с общим количеством кальция во всем экстрацеллюлярном пространстве, приближающимся к 1 г. Прибавление или вычитание 0,3 г из небольшого количества кальция в экстрацеллюлярном пространстве может вызвать серьезную гиперили гипокальциемию. Однако существует первая «линия обороны», предупреждающая эти изменения еще до их возникновения. Как паратгормон, так и кальцитонин начинают действовать посредством механизма обратной связи.

Буферная функция обмениваемого кальция в костях — первая «линия обороны». Обмениваемые соли кальция в костях являются аморфными фосфорно-кальциевыми соединениями, главным образом это СаНРО4 или некоторые похожие соединения, непрочно связанные в костях, или находящиеся в состоянии динамического равновесия с ионами кальция и фосфатов внеклеточной жидкости.

Количество этих солей, имеющееся в наличии для обмена, составляет приблизительно 0,5-1% общего количества солей в кости (общее количество солей — 5-10 г кальция). В связи с легкостью размещения и извлечения способных к обмену солей увеличение концентрации кальция и фосфатов во внеклеточной жидкости выше нормальных показателей немедленно вызывает депонирование способных к обмену солей в кости. Напротив, снижение их концентрации сопровождается немедленным вымыванием из костей легкообмениваемых солей. Эти реакции совершаются быстро, т.к. аморфные скопления чрезвычайно малы, а общая площадь поверхности, обращенная к жидкости кости, составляет приблизительно 0,4 га, если не больше.

Через кости за минуту протекает почти 5% всей крови. Это составляет около 1% общего объема внеклеточной жидкости, поэтому около половины избыточного количества кальция, которое появилось в экстрацеллюлярной жидкости, извлекается за счет этой буферной функции костей приблизительно за 70 мин.

Дополнительно к буферной функции костей митохондрии многих тканей организма, особенно печени и кишечника, содержат значительное количество обмениваемого кальция (во всем организме суммарно около 10 г), который является дополнительной буферной системой, помогающей сохранять концентрацию ионов кальция во внеклеточной жидкости неизменной.

источник

Гуморальная регуляция уровня кальция в крови осуществляется паратгормоном(околощитовидная железа) и кальцитонином (гормон щитовидной железы).

Паратгормон обеспечивает увеличение уровня кальция в крови. Органами-мишенями для него служат кости и почки. В костной ткани паратирин усиливает функцию остеокластов, что способствует деминерализации кости и повышению уровня кальция и фосфора в плазме. В канальцевом аппарате почек паратгормон стимулирует реабсобрцию кальция и тормозит реабсобцию фосфатов, что приводит к гиперкальциемии и фосфатурии. Паратирин усиливает синтез кальцитриола, который усиливает образование кальцийсвязывающего белка в стенке кишечника, что способствует обратному всасыванию кальция.

Кальцитонин (тиреокальцитонин) снижает уровень кальция в крови. Он действует на костную систему, почки и кишечник, вызывая эффекты противоположные паратгормону. В костной ткани кальцитонин усиливает активность остеобластов и процессы минерализации. В почках и кишечнике угнетает раебсорбцию кальция и стимулирует всасывание фосфатов.

Резус-фактор

К.Ландштейнером и А.Винером в 1940 г. в эритроцитах обезьяны макаки-резуса был обнаружен антиген, который они назвали резус-фактором. Этот антиген находится и в крови 85% людей белой расы. Кровь, содержащая резус-фактор, называется резус-положительной (Rh+). Кровь, в которой резус-фактор отсутствует, называется резус-отрицательной (Rh-). Резус-фактор передается по наследству. В настоящее время известно, что система резус включает много антигенов. Наиболее активными в антигенном отношении являются антиген D, затем следуют С, Е, d, с, е.

Резус-конфликт — иммунологическая несовместимость по резус-фактору крови резус-отрицательной матери и резус-положительного плода, характеризующаяся сенсибилизацией материнского организма. Причиной резус-конфликта является трансплацентарное проникновение эритроцитов плода, несущих положительный резус-фактор в кровоток резус-отрицательной матери. Резус-конфликт может вызывать внутриутробную гибель плода, невынашивание беременности, мертворождение и гемолитическую болезнь новорожденного.

Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: Да какие ж вы математики, если запаролиться нормально не можете. 8254 — | 7221 — или читать все.

источник

Нормальная концентрация ионов Са 2+ в плазме составляет 2,1— 2,6 ммоль/л. Роль Са 2+ в организме: 1) участвует в формировании потенциалов действия сердечной и гладких мышц; 2) вторичный посредник действия многих биологически активных веществ (медиаторов, гормонов и др.); 3) запускает сокращение всех типов мышц, а также секрецию медиаторов, гормонов и продуктов экзокринных желез; 4) снижает возбудимость нервной ткани; 5) один из факторов свертывания крови; 6) соли кальция — основной компонент костей и зубов.

Поддержание постоянства концентрации кальция в плазме крови обеспечивают три гормона:

1) паратгормон (ПТГ, паратирин) — секретируется паращитовидными железами;

2) кальцитриол ( / ,25-дигидроксихолекальциферол, активная форма витамина D3) — стероидный гормон. Предшественник кальцитриола (витамин D3, холекальциферол) синтезируется из холестерина в коже под действием ультрафиолета солнечных лучей. Далее витамин D3 последовательно активируется (гидроксилируется) сначала в печени, а потом в почках, превращаясь в кальцитриол;

3) кальцитонин (тирокалъцитонин) — секретируется парафолликулярными клетками щитовидной железы.

Эти три «кальцийрегулирующих» гормона регулируют концентрацию Са 2+ в крови, влияя на три процесса: 1) всасывание Са 2+ в тонкой кишке; 2) реабсорбцию Са 24 в почках; 3) резорбцию костей и «вымывание» из них Са 2+ .

Паратгормон и кальцитриол повышают концентрацию Са 2+ в крови стимулируя все три процесса, а кальцитонин снижает концентрацию Са 2+ в крови, оказывая противоположное действие на органы-эффекторы. Следует отметить, что только кальцитриол оказывает прямое действие на всасывание Са 2+ в тонкой кишке, а паратгормон и кальцитонин делают это опосредованно — регулируя синтез кальцитриола в почках. Таким образом кальцитриол — главный гормон^ определяющий общее содержание Са 2+ в организме.

Кальциевый обмен тесно связан с фосфорным. Соответственно, указанные гормоны регулируют содержание в организме не только ионов Са2+, но и фосфатов. В частности, кальцитриол усиливает всасывание фосфатов в тонкой кишке, а также их реабсорбцию в почках; а паратгормон и кальцитонин угнетают реабсорбцию фосфатов в почках.

Регуляция секреции паратгормона, кальцитриола и кальцитонина, в основном, определяется концентрацией Са 2+ в крови по принципу отрицательной обратной связи. Снижение концентрации Са 2+ : а) усиливает секрецию паратгормона и кальцитриола, которые повышают уровень Са 2+ в крови; б) тормозит секрецию кальцитонина, снижающего этот уровень. Наоборот, повышение концентрации Са 2+ в крови приводит к противоположным сдвигам секреции кальцийрегулирующих гормонов. В результате концентрация Са 2+ поддерживается на относительно постоянном уровне.

Основной контроль фосфорно-кальциевого обмена обеспечивают паратгормон и кальцитриол (рис. 10).

Гипокальциемия немедленно активирует секрецию паратгормона, основное действие которого заключается в выведении Са 2+ и фосфатов из костей в кровь. Образующийся при этом в крови избыток фосфатов ликвидируется за счет усиления их выведения почками (паратгормон оказывает фосфатурическое действие). Таким образом, содержание Са 2+ в крови повышается, а фосфатов — нет, т.е. сохраняется нормальное соотношение между концентрацией Са 2+ и фосфатов в крови.

Рис. 10. Регуляция содержания ионов кальция в крови.

Паратгормон является фактором быстрого реагирования на угрожающую организму гипокальциемию. Однако он восстанавливает уровень Са 2+ в крови ценой выраженной деструкции костной ткани.

Гомеостатическое действие кальцитриола также направлено на восстановление сниженного уровня Ca 2+ в крови. При этом кальцитриол действует медленнее, чем паратгормон, но осуществляет более тонкую регуля цию фофорно-кальциевого обмена. Главное действие кальцитриола — повы шение общего содержания Са 2+ и фосфатов в организме за счет усиления их всасывания в тонкой кишке и реабсорбции в почках. Этот эффект преобладает над «вымыванием» Са 2+ и фосфатов из костей. Поэтому в целом кальцитриол способствует нормальному росту и минерализации костей, обеспечивая наличие необходимого кальций-фосфатного материала.

Патология. Гипокальциемия возникает при снижении секреции ПТГ (гипопаратироз) или при недостаточности витамина D у детей (рахит ) I. Гипокальцемия может представлять угрозу для жизни из-за возникновения судорог скелетных мышц (т ет ания). Судороги в этом случае возникают вследствие повышения возбудимости нервной ткани (Са 2+ снижает возбудимость).

Гиперкальциемия возникает при увеличении секреции ПТГ (гиперпаратироз) или при передозировке витамина D. Сопровождается отложением солей кальция в сосудах и почках (образование мочевых кам ней), снижением возбудимости нервной и мышечной тканей.

источник

Кальций является одним из важнейших ионов организма, который принимает участие в регуляции свертывания крови, мышечном сокращении, синаптической передаче нервного импульса, является вторичным внутриклеточным посредником в реализации эффектов многих гормонов и БАВ, определяет жесткость и прочность костей. Основное количество кальция идет именно на построение скелета, который одновременно играет роль и основного депо кальция. В организме взрослого человека содержится около 1000 г кальция. 99% всего кальция находится в костях. Около 99% кальция костей входит в состав кристаллов гидроксиапатита. Лишь 1% кальция костей находится в виде фосфатных солей, именно эти соли легко обмениваются между костью и кровью и играют роль буфера («обменный кальций») при изменениях концентрации кальция в плазме крови.

Регуляция концентрации кальция в крови путем депонирования его в кости или мобилизации из костей определяется двумя гормонами с противоположными эффектами: кальцитонин парафолликулярных клеток щитовидной железы и паратгормон (паратиреоидный гормон, паратирин) околощитовидных желез. Человек имеет 2 пары околощитовидных желез, расположенных на задней поверхности или погруженных внутрь щитовидной железы. Главные, или оксифильные, клетки этих желез вырабатывают паратгормон, Кроме того, в регуляции концентрации кальция и, главное, в его депонировании в кости принимает участие еще один гуморальный фактор — активная форма витамина Д3.

Кальцитонин и паратгормон регулируют концентрацию кальция в крови в зависимости от его концентрации – по принципу отклонения.

КАЛЬЦИТОНИН — пептидный гормон парафолликулярных клеток щитовидной железы, кроме этого он образуется в тимусе и легких. Стимулом для секреции является значительное повышение концентрации кальция в крови (выше 4,5 мМоль/л) гормоны желудочно-кишечного тракта, особенно гастрин. Этот гормон вместе с паратирином и кальцитриолом регулирует уровень кальция в крови, так же, как и два другие гормона основные эффекты оказывает на кости, кишечник и почки.

В костях облегчает минерализацию и подавляет резорбцию костной ткани. Это происходит в результате действия гормона на костную ткань, где он активирует функцию остеобластов и усиливает процессы минерализации. Функция остеокластов, разрушающих костную ткань, напротив, угнетается.

В почках — снижает реабсорбцию кальция и усиливает обратное всасывание фосфатов.

В кишечнике эффекты в норме выражены очень слабо и заключаются в снижении всасывания кальция.

ПАРАТИРИН — гормон околощитовидных желез. Стимулом для выделения служит снижение концентрации кальция в крови ниже 2 мМоль/л. Инактивация гормона тоже происходит под влиянием концентрации кальция — при повышении концентрации иона в плазме просто происходит разрушение гормона. По физиологическим эффектам — антагонист кальцитонина, вместе с которым регулирует уровень кальция в крови. Рецепторы ПТГ — трансмембранные гликопротеины, связанные с G‑белком — в значительном количестве содержатся в костной ткани (остеобласты) и корковой части почек (эпителий извитых канальцев нефрона). Основной эффект паратирина — повышение концентрации кальция в крови (рисунок 20).

Читайте также:  От пиво может повышаться сахар в крови

Рисунок 21. Эффекты паратиреоидного гормона,

источник

Кальций является одним из важнейших ионов организма, который принимает участие в регуляции свертывания крови, мышечном сокращении, синаптической передаче нервного импульса, является вторичным внутриклеточным посредником в реализации эффектов многих гормонов и БАВ, определяет жесткость и прочность костей. Основное количество кальция идет именно на построение скелета, который одновременно играет роль и основного депо кальция. В организме взрослого человека содержится около 1000 г кальция. 99% всего кальция находится в костях. Около 99% кальция костей входит в состав кристаллов гидроксиапатита. Лишь 1% кальция костей находится в виде фосфатных солей, именно эти соли легко обмениваются между костью и кровью и играют роль буфера («обменный кальций») при изменениях концентрации кальция в плазме крови.

Регуляция концентрации кальция в крови путем депонирования его в кости или мобилизации из костей определяется двумя гормонами с противоположными эффектами: кальцитонин парафолликулярных клеток щитовидной железы и паратгормон (паратиреоидный гормон, паратирин) околощитовидных желез. Человек имеет 2 пары околощитовидных желез, расположенных на задней поверхности или погруженных внутрь щитовидной железы. Главные, или оксифильные, клетки этих желез вырабатывают паратгормон, Кроме того, в регуляции концентрации кальция и, главное, в его депонировании в кости принимает участие еще один гуморальный фактор — активная форма витамина Д3.

Кальцитонин и паратгормон регулируют концентрацию кальция в крови в зависимости от его концентрации – по принципу отклонения.

КАЛЬЦИТОНИН— пептидный гормон парафолликулярных клеток щитовидной железы, кроме этого он образуется в тимусе и легких. Стимулом для секреции является значительное повышение концентрации кальция в крови (выше 4,5 мМоль/л) гормоны желудочно-кишечного тракта, особенно гастрин. Этот гормон вместе с паратирином и кальцитриолом регулирует уровень кальция в крови, так же, как и два другие гормона основные эффекты оказывает на кости, кишечник и почки.

В костях облегчает минерализацию и подавляет резорбцию костной ткани. Это происходит в результате действия гормона на костную ткань, где он активирует функцию остеобластов и усиливает процессы минерализации. Функция остеокластов, разрушающих костную ткань, напротив, угнетается.

В почках — снижает реабсорбцию кальция и усиливает обратное всасывание фосфатов.

В кишечнике эффекты в норме выражены очень слабо и заключаются в снижении всасывания кальция.

ПАРАТИРИН — гормон околощитовидных желез. Стимулом для выделения служит снижение концентрации кальция в крови ниже 2 мМоль/л. Инактивация гормона тоже происходит под влиянием концентрации кальция — при повышении концентрации иона в плазме просто происходит разрушение гормона. По физиологическим эффектам — антагонист кальцитонина, вместе с которым регулирует уровень кальция в крови. Рецепторы ПТГ — трансмембранные гликопротеины, связанные с G‑белком — в значительном количестве содержатся в костной ткани (остеобласты) и корковой части почек (эпителий извитых канальцев нефрона). Основной эффект паратирина — повышение концентрации кальция в крови (рисунок 20).

Рисунок 21. Эффекты паратиреоидного гормона,

Увеличивающие концентрацию ионов кальция в крови

В костях этот гормон повышает резорбцию костной ткани несколькими путями: 1) стимулирует активность остеокластов и увеличивает их количество, 2) прерывает цикл Кребса на стадии образования лимонной кислоты, в результате местного ацидоза снижается активность щелочной фосфатазы и скорости минерализации, 3) избыток кислот «вымывает» кальций из костной ткани в кровь в виде растворимых солей. В почках снижает реабсорбцию кальция в проксимальных канальцах, но усиливает в дистальных, что препятствует потере кальция с мочой и увеличивает его концентрацию в крови. Влияя на обмен кальция, паратгормон одновременно воздействует и на обмен фосфора в организме: он угнетает обратное всасывание фосфатов и усиливает их выведение с мочой (фосфатурия). В кишечнике стимулирует всасывание кальция, этот эффект осуществляется преимущественно через стимуляцию образования в почках кальцитриола. Паратирин вызывает в почках диурез и натриурез.

источник

Ионы Са 2+ принимают участие в формировании многих структур организма, в регуляции течения метаболических процессов.

Участие в контактном узнавании клеток за счет образования катионных Са 2+ мостиков.

Стабилизация формы клеток в результате взаимодействия с компонентами клеточных мембран и цитоскелета.

Регуляция проницаемости мембран нейронов и миоцитов.

Участие в мышечном сокращении.

Стимуляция биосинтетических и секреторных процессов.

Регуляция активности ряда ферментов.

Регуляция окислительного фосфорилирования.

Стимуляция свертывания крови.

Опосредование эффектов ряда гормонов.

Концентрация Са в крови стабильна, ее колебания не превышают 3%. В плазме крови содержится 2,4 – 4 ммоль/л (9-11 мг%) кальция.

Уровень кальция зависит от функционального состояния 3 структур организма:

Костного аппарата – резервуара Са.

Тонкого кишечника, который обеспечивает всасывание Са и его реабсорбцию.

Почек, в которых осуществляется реабсорбция ионов кальция и фосфора.

Уровень кальция в организме контролируется 2 гормонами: паратгормоном и кальцитонином, а также витамином 1,25 (ОН)2D3.

Паратгормонобладает гиперкальциемическим действием и одновременно снижает концентрацию фосфатов в крови.

В кости паратгормон стимулирует мобилизацию и выход в кровь Са 2+ .

В кишечнике паратгормон усиливает всасывание Са 2+ в кровь.

В почках паратгормон усиливает реабсорбцию Са 2+ в дистальных сегментах извитых канальцев и тормозит реабсорбцию фосфатных ионов в проксимальных отделах канальцевого аппарата.

Паратгормон стимулирует в почках синтез 1,25 (ОН)2D3из малоактивного 25-ОН-D3.

1,25 (ОН)2D3 витамин усиливает всасывание Са 2+ и фосфатов в слизистой тонкого кишечника, мобилизует Са 2+ и фосфаты из костной ткани и увеличивает реабсорбцию Са 2+ в почках.

Кальцитонин– гипокальцемический гормон.

В костной ткани кальцитонин способствует отложению Са 2+ .

Замедляет всасывание Са и фосфатов из кишечника.

В почках кальцитонин препятствует реабсорбции Са 2+ .

В отношении уровня фосфатов в крови кальцитонин и паратгормон являются синергистами: оба гормона вызывают гипофосфатемию.

Отклонения в концентрации Са 2+ в крови, превышающие 3-5%, приводят к специфическому изменению интенсивности функционирования желез, секретирующих паратгормон и кальцитонин.

Повышение уровня ионов Са 2+ в крови стимулирует секрецию кальцитонина и торможение секреции паратгормона и 1,25 (ОН)2D3.

Повышение уровня ионов Са 2+ в крови стимулирует секрецию паратгормона и витаминаD3и тормозит секрецию кальцитонина.

Гипокальцемия – онемение и покалывание в пальцах и оклоротовой области, гиперреактивные рефлексы, спазмы мышц, тетания, судороги. У новорожденных могут наблюдаться летаргия и плохое сосание.

При хронической гипокальцемии происходят переломы костей как следствие остеопороза.

Гиперкальцемия может сопровождаться кальцификацией мягких тканей. Образуются фосфаты кальция, которые откладываются во всех органах.

Витамины – низкомолекулярные вещества органической природы, необходимы для выполнения биохимических и физиологических функций, необходимые в небольших количествах, не выполняющих пластических и энергетических функций. Витамины являются активаторами биохимических процессов, т.к. обеспечивают выполнение каталитических функций ферментов. Витамины не синтезируются в организме или синтезируются в таких количествах, которые не достаточны для выполнения функций и поэтому должны поступать в составе пищевых продуктов, при резкой недостаточности витаминов в организме развивается характерный симптомокомплекс.

Термин «Витамин» впервые был использован для обозначения специфического микрокомпонента пищи органической природы, предотвращающего обусловленную неполноценным питанием болезнь бери-бери, распространенную в странах, где население употребляло в пищу много риса. Т.к. этот микрокомпонент обладал свойствами амина, польский биохимик Казимир Функ, получивший это вещество в чистом виде, назвал его «витамин», что означает «необходимый для жизни амин».

Витамины делят на 2 группы:

Жирорастворимые – А, Е, D, К, F(совокупность всех полиненасыщенных кислот).

Выделяют группу витаминоподобных веществ. Это соединения, которые могут синтезироваться в организме и недостаток не вызывает развитие симптомокомплекса.

К витаминоподобным веществам относятся: пангамовая кислота, оротовая кислота, липоевая кислота, холин, инозитол, S-метилметионин, карнитин.

1.Водорастворимые витамины являются коферментами или составной частью коферментов.

2.Жирорастворимые витамины входят в состав липопротеидного слоя мембран.

Нарушение функций витаминов:

Нарушение обмена витаминов может быть связано с нарушением всасывания витаминов или их транспорта с кровью. Витамин в организме должен превратиться в активную форму. Нарушение образования активной формы кофермента или нарушение синтеза апофермента может привести к нарушению функций витаминов.

Этапы нарушений обмена витаминов.

Всасывание витаминов может нарушаться при повышенной перистальтике, при отсутствии рецепторов для витаминов.

Транспорт витаминов связан с альбуминами крови.

Синтез кофермента может быть нарушен при отсутствии ферментов, обеспечивающих синтез коферментов, отсутствие энергии.

При недостатке белков может быть нарушен синтез апофермента, что приведет к отсутствию апофермента.

Недостаточность витаминов в организме вызывает гиповитаминоз.

Авитаминоз – резко выраженная недостаточность витаминов в пище.

Концентрация витамина в крови или моче.

(в крови, клетках)

Снижено (нарушен биосинтез)

Активность витаминзависимых ферментов в клетках

Снижено (апофермент синтезируется, но он аномален и связь с коферментом непрочная)

Не определяется (синтезируется не активный апофермент)

Содержание витаминов определяют в лимфоцитах периферической крови и фибробластах кожи.

Причины возникновения и коррекция авитаминозов.

Оценка пищевого рациона (правильность обработки).

Оценка всасывания витаминов.

Для устранения этих авитаминозов вводят дозы близкие к физиологическим.

при снижении концентрации кофермента:

а) вводят кофермент и определяют концентрацию кофермента в клетке

б) вводят большие дозы витаминов для создания концентрационного эффекта, т.е. для увеличения концентрации субстрата. Доза витамина увеличивается в 100 – 500 раз, т.е. проводят мегавитаминотерапию. Лечение направлено на активацию ферментов, синтезирующих данный кофермент.

При снижении активности фермента вводят большие дозы витаминов, из которых синтезируется избыток кофермента, т.е. проводят мегавитаминотерапию.

При отсутствии активности фермента витаминотерапия не поможет, т.к. имеет место генетический дефект.

Если недостаток витамина приводит к недостаточности синтеза продукта В, то лечат введением вещества В, а если отрицательный эффект связан с накоплением вещества А, то нужно ограничить поступление вещества А:

АВ

Причины нарушений обмена витаминов

Недостаток витаминов в пище или неправильная обработка пищи.

Нарушение всасывания витаминов. Для всасывания витамина В12необходим внутренний фактор Кастла, выделяемый обкладочными клетками желудка, всасывание жирорастворимых витаминов происходит в присутствии желчных кислот. Всасывание может нарушаться при повышенной перистальтике, при отсутствии рецепторов для витаминов.

Нарушение транспорта витаминов в кровотоке и нарушение трансмембранного переноса в клетки-мишени.

В транспорте витаминов в кровотоке участвуют альбумины крови. Снижение концентрации альбуминов нарушает транспорт витаминов.

Нарушение синтеза коферментов из витаминов, из-за отсутствия ферментов и энергии.

Недостаток белков в пище приводит к недостатку аминокислот, из которых синтезируется апофермент, т.е. недостаток белка в пище вызывает нарушение синтеза апофермента.

Нарушение синтеза кофермента и апофермента приводит к нарушению синтеза витаминзависимого фермента.

Авитаминоз – патологическое состояние, развивающееся вследствие длительного и полного отсутствия витамина (ов) в организме.

Гиповитаминоз – патологическое состояние, наступающее при неполной, частичной нехватке витамина (ов) в организме.

Причины возникновения гиповитаминозов.

Алиментарные (отклонение фактического рациона от поглощаемы рационов).

а) отсутствие витаминов в пищевых продуктах (однообразное питание, мало растительной пищи, сезонность).

б) неправильная кулинарная обработка при приготовлении пищи (длительное, неправильное хранение, температурный фактор, кислоты, щелочи при приготовлении консервированных продуктов).

в) национальные, местные обычаи.

Нарушения всасывания и транспорта витаминов

б) заболевание печени (желчь – необходимое условие для всасывания жирорастворимых витаминов).

в) нарушение синтеза белков – переносчиков.

Нарушение синтеза коферментов, изменение метаболизма витаминов, повышенное разрушение витаминов (климат, болезни, беременность, физическая нагрузка).

Резкое снижение энергозатрат в 2 – 3 раза, в соответствии с этим уменьшение потребления пищи.

Увеличение доли консервированных продуктов, полуфабрикатов, продуктов, приносящих калории.

Для борьбы с состоянием гиповитаминоза можно воспользоваться:

Витаминизацией продуктов питания.

Индивидуальная профилактика состояния гиповитаминоза путем назначения физиологических доз витаминов.

Клиническая картина гиповитаминозов.

Iстадия – общая для всех витаминов – вялость, апатия, бессонница, быстрая утомляемость, головокружение, раздражительность, потеря аппетита.

Читайте также:  Тонометры с измерением уровня сахара в крови

IIстадия – характерна клиническая картина для каждого витамина.

Определение недостатка витаминов.

Определение концентрации витаминов в крови, моче и тканях (лейкоциты, фибробласты кожи).

Активность Ферментных систем, в состав которых входит витамин.

Определение концентрации метаболитов в реакции, катализируемой витаминзависимым ферментом

АВ

Если недостаток витамина приводит к недостаточности синтеза продукта В, то лечат введением вещества В, а если отрицательный эффект связан с накоплением вещества А, то нужно ограничить поступление вещества А.

С лечебной целью назначают физиологические дозы витаминов, а также мегадозы. Выбор дозы зависит от причины и для ее установления проводят диагностику по схеме:

источник

Гуморальная регуляция уровня кальция в крови осуществляется паратгормоном(околощитовидная железа) и кальцитонином (гормон щитовидной железы).

Паратгормон обеспечивает увеличение уровня кальция в крови. Органами-мишенями для него служат кости и почки. В костной ткани паратирин усиливает функцию остеокластов, что способствует деминерализации кости и повышению уровня кальция и фосфора в плазме. В канальцевом аппарате почек паратгормон стимулирует реабсобрцию кальция и тормозит реабсобцию фосфатов, что приводит к гиперкальциемии и фосфатурии. Паратирин усиливает синтез кальцитриола, который усиливает образование кальцийсвязывающего белка в стенке кишечника, что способствует обратному всасыванию кальция.

Кальцитонин (тиреокальцитонин) снижает уровень кальция в крови. Он действует на костную систему, почки и кишечник, вызывая эффекты противоположные паратгормону. В костной ткани кальцитонин усиливает активность остеобластов и процессы минерализации. В почках и кишечнике угнетает раебсорбцию кальция и стимулирует всасывание фосфатов.

К.Ландштейнером и А.Винером в 1940 г. в эритроцитах обезьяны макаки-резуса был обнаружен антиген, который они назвали резус-фактором. Этот антиген находится и в крови 85% людей белой расы. Кровь, содержащая резус-фактор, называется резус-положительной (Rh+). Кровь, в которой резус-фактор отсутствует, называется резус-отрицательной (Rh-). Резус-фактор передается по наследству. В настоящее время известно, что система резус включает много антигенов. Наиболее активными в антигенном отношении являются антиген D, затем следуют С, Е, d, с, е.

Резус-конфликт — иммунологическая несовместимость по резус-фактору крови резус-отрицательной матери и резус-положительного плода, характеризующаяся сенсибилизацией материнского организма. Причиной резус-конфликта является трансплацентарное проникновение эритроцитов плода, несущих положительный резус-фактор в кровоток резус-отрицательной матери. Резус-конфликт может вызывать внутриутробную гибель плода, невынашивание беременности, мертворождение и гемолитическую болезнь новорожденного.

Условные рефлексы (У.Р.) — это индивидуально приобретённые в процессе жизнедеятельности реакции организма на раздражение. Создатель учения об условных рефлексах И.П. Павлов называл их временной связью раздражителя с ответной реакцией, которая образуется в организме при определённых условиях.

Свойства условных рефлексов:

1. Формируются в течение всей жизни в результате взаимодействия индивида с внешней средой.

2. Не отличаются постоянством и без подкрепления могут исчезать

3. Не имеют постоянного рецептивного поля

4. Не имеют постоянной рефлекторной дуги

5. Для возникновения условнорефлекторной реакции не требуется действие специфического раздражителя.

Пример условного рефлекса — выработка слюноотделения у

Условные рефлексы образуются только при определённом сочетании свойств раздражителя и внешних условий. Для выработки условного рефлекса используется сочетание индифферентного или условного раздражителя и подкрепляющего безусловного. Индифферентным называется такой раздражитель, который в естественных условиях не может вызвать данную рефлекторную реакцию, а безусловным — специфический раздражитель, который всегда вызывает возникновение этого рефлекса.

Для выработки условных рефлексов необходимы следующие условия:

1.Действие условного раздражителя должно предшествовать воздействию безусловного.

2.Необходимо многократное сочетание условного и безусловного раздражителей.

3.Индифферентный и безусловный раздражители должны иметь сверхпороговую силу.

4.В момент выработки условного рефлекса должны отсутствовать посторонние внешние раздражения.

5.Ц.Н.С. должна быть в нормальном функциональном состоянии.

Все условные рефлексы в зависимости от возникающего поведения делятся на классические и инструментальные.

1.Классические это такие, которые вырабатываемые в соответствии с вышеприведёнными условиями Пример — слюноотделение, выработанное на звонок.

2.Инструментальные — это рефлексы, способствующие достижению или избеганию раздражителя. Например, при включении звонка, предшествующего безусловнорефлекторному болевому раздражению, собака совершает комплекс движений, чтобы освободиться от электродов. При звонке, предшествующем пище виляет хвостом, облизывается, тянется к чашке и т.д.

По афферентному звену условнорефлекторной дуги, т.е. рецепторам выделяют экстерорецептивные и интерорецептивные условные рефлексы. Экстерорецептивные возникают в ответ на раздражение внешних рецепторов и служат для связи организма с внешней средой. Интерорецептивные — на раздражение рецепторов внутренней среды. Они необходимы для поддержания постоянства внутренней среды.

По эфферентному звену условнорефлекторной дуги выделяют двигательные и вегетативные условные рефлексы. Пример двигательного — отдёргивание лапы собакой на звук метроном, если последний предшествует болевому раздражения лапы. Пример вегетативного — слюноотделение на звонок у собаки.

Отдельно выделяются условные рефлексы высших порядков. Это условные рефлексы, которые вырабатываются не путём подкрепления условного раздражителя безусловным, а при подкреплении одного условного раздражителя другим. В частности, на сочетание зажигания лампы с дачей пищи вырабатывается условный слюноотделительный рефлекс I — го порядка. Если после этого подкреплять звонок зажиганием лампы, то выработается условнорефлекторное слюноотделение на звонок. Это будет рефлексом II — го порядка. У собаки можно выработать условные рефлексы лишь IV — го порядка, а у человека до XX — го порядка. Условные рефлексы высших порядков нестойкие и быстро угасают.

У млекопитающих и человека основная роль в формировании условных рефлексов принадлежит коре. При их выработке от периферических рецепторов, воспринимающих условный и безусловный раздражители, нервные импульсы по восходящим путям поступают в подкороковые центры, а затем те зоны коры, где находится представительство данных рецепторов. В нейронах этих 2-х участков коры возникают биопотенциалы, Они совпадают по времени, частоте и фазе. По межкортикальным путям происходит циркуляция, т.е. реверберация нервных импульсов. В результатет синаптической потенциации активизируются синаптические связи, расположенные между нейронами той и другой зоны коры. Улучшение проведения закрепляется, возникает временная или условнорефлекторная связь (схема дуги усл. слюноотделительного рефлекса).

источник

Билет 3,10 Источники и пути расходования глюкозы кровью. Регуляция содержания глюкозы в крови инсулин,глюкагон, адреналин, глюкокортикоиды

Главные источники глюкозы – сахароза и крахмал, поступающие в организм с пищей, запасы гликогена в печени, а также глюкоза, образующаяся в тканях в результате биохимических реакций (глюконеогенез). Метаболизм глюкозы имеет две важные особенности. Первая – запасание полисахарида гликогена, особенно в печени и в мышцах. Гликоген может быть быстро использован в качестве источника глюкозы, и, следовательно, и энергии для работы мышц. Вторая особенность, состоит в том, что многие ткани, например мозг, клетки крови, мозговое вещество надпочечников и семенники, получают практически всю необходимую энергию за счет окисления глюкозы.

Инсулин. Единственный гормон понижающий содержание сахара в крови. Повышает проницаемость мембран клеток для глюкозы в жировой и мышечной ткани. Стимулирует утилизацию глюкозы в клетках печени, мышечной и жировой ткани.

1) ингибирует глюконеогенез в печени, повышая уровень фруктозо-2,6,бифосфата,ингибирует глюкозо-6 фосфатазу и синтез фосфоенолпируваткарбоксиназы 2)уменьшает распад гликогена(инактивируя киназу фосфорилазы) и повышает его синтез(активирует гликогенсинтазу) 3)интенсифицирует реакции гликолиза(повышает активность и количество ключевых ферментов-глюко и гексокиназы,фосфофруктокиназы, пируваткиназы) 4) повышает активность ферментов пентозофосфатного цикла-генератор молекул НАДФН необходимых для синтеза ЖК) 5)в мышечной и жировой ткани инсулин усиливает поступление глюкозы в клетки (увеличение числа GLUT-4)

Ингибирует аденилатциклазу, активирует фосфодиэстеразу, снижает концентрацию ц-АМФ, поэтому тормозит распад гликогена (фосфорилаза), стимулирует синтез гликогена (гликогенсинтаза). Активирует ключевые ферменты распада глюкозы до пирувата. Активирует пируват ДГкомплекса (ПВДГ) окислительное декарбоксилирование пирувата до ацетилкофермента А. Активирует пентозофосфатный путь распада глюкозы до пентоз и НАДФН2. Тормозит глюконеогенез.

Глюкагон повышает содержание сахара в крови

-влияние на углеводный обмен – активирует фосфорелизу, гликоген в печени, т.е. распад гликогена.

– тормозит гликогенсинтазу, т.е. синтез гликогена.

– Стимулирует глюконеогенез из аминокислот и глицерина и триглицеридов (жиров).

Глюкокортикоиды: повышают содержание сахара в крови: 1. уменьшает проницаемость мембраны для глюкозы. 2. активируют фермент глюкозо-6-фосфатазу. 3. стимулируют глюконеогенез, в печени и особенно в почках из триглицеридов и аминокислот, стимулируют синтез ключевых ферментов (фосфоенолпируват-карбоксиназы),высвобождение АК-субстратов глюконеогенеза 4)повышают запасы гликогена в печени(активируя гликогенсинтазу 5)тормозят потребление глюкозы во внепеченочных тканях( мышцах и жировой)

Адреналин повышает содержание сахара в крови: активирует фосфорелазу гликогена (распад гликогена), тормозит гликогенситазу (синтез гликогена), ингибирует секрецию инсулина,что снижает утилизацию глюкозы жировой тканью и скелетными мышцами,стимулирует глюконеогенез из лактата и лицерола

источник

Поддержание оптимальной концентрации глюкозы в крови — результат действия множества факторов, сочетание слаженной работы многих систем организма. Ведущая роль в поддержании динамического равновесия между процессами образования и утилизации глюкозы принадлежит гормональной регуляции.

В среднем уровень глюкозы в крови здорового человека, в зависимости от давности употребления пищи, колеблется от 2,7 до 8,3 (норма натощак 3,3 — 5,5) ммоль/л, однако сразу после приёма пищи концентрация резко возрастает на короткое время.

Две группы гормонов противоположно влияют на концентрацию глюкозы в крови:

единственный гипогликемический гормон — инсулин

и гипергликемические гормоны (такие как глюкагон, гормон роста и гормоны надпочечников), которые повышают содержание глюкозы в крови

Когда уровень глюкозы снижается ниже нормального физиологического значения, секреция инсулина бета-клетками снижается, но в норме никогда не прекращается. Если же уровень глюкозы падает до опасного уровня, высвобождаются так называемые контринсулиновые (гипергликемические) гормоны (наиболее известны глюкокортикоиды и глюкагон — продукт секреции альфа-клеток панкреатических островков), которые вызывают высвобождение глюкозы в кровь. Адреналин и другие гормоны стресса сильно подавляют выделение инсулина в кровь.

Точность и эффективность работы этого сложного механизма является непременным условием нормальной работы всего организма, здоровья. Длительное повышенное содержание глюкозы в крови (гипергликемия) является главным симптомом и патогенетической сущностью сахарного диабета. Гипогликемия — понижение содержания глюкозы в крови — часто имеет ещё более серьёзные последствия. Так, экстремальное падение уровня глюкозы может быть чревато развитием гипогликемической комы и смертью.

Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: Для студентов недели бывают четные, нечетные и зачетные. 9159 — | 7337 — или читать все.

85.95.189.26 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам | Обратная связь.

Отключите adBlock!
и обновите страницу (F5)

очень нужно

источник

Кальций является одним из важнейших ионов организма, который принимает участие в регуляции свертывания крови, мышечном сокращении, синаптической передаче нервного импульса, является вторичным внутриклеточным посредником в реализации эффектов многих гормонов и БАВ, определяет жесткость и прочность костей. Основное количество кальция идет именно на построение скелета, который одновременно играет роль и основного депо кальция. В организме взрослого человека содержится около 1000 г кальция. 99% всего кальция находится в костях. Около 99% кальция костей входит в состав кристаллов гидроксиапатита. Лишь 1% кальция костей находится в виде фосфатных солей, именно эти соли легко обмениваются между костью и кровью и играют роль буфера («обменный кальций») при изменениях концентрации кальция в плазме крови.

Регуляция концентрации кальция в крови путем депонирования его в кости или мобилизации из костей определяется двумя гормонами с противоположными эффектами: кальцитонин парафолликулярных клеток щитовидной железы и паратгормон (паратиреоидный гормон, паратирин) околощитовидных желез. Человек имеет 2 пары околощитовидных желез, расположенных на задней поверхности или погруженных внутрь щитовидной железы. Главные, или оксифильные, клетки этих желез вырабатывают паратгормон, Кроме того, в регуляции концентрации кальция и, главное, в его депонировании в кости принимает участие еще один гуморальный фактор — активная форма витамина Д3.

Кальцитонин и паратгормон регулируют концентрацию кальция в крови в зависимости от его концентрации – по принципу отклонения.

КАЛЬЦИТОНИН— пептидный гормон парафолликулярных клеток щитовидной железы, кроме этого он образуется в тимусе и легких. Стимулом для секреции является значительное повышение концентрации кальция в крови (выше 4,5 мМоль/л) гормоны желудочно-кишечного тракта, особенно гастрин. Этот гормон вместе с паратирином и кальцитриолом регулирует уровень кальция в крови, так же, как и два другие гормона основные эффекты оказывает на кости, кишечник и почки.

Читайте также:  Почему пониженное содержание сахара в крови

В костях облегчает минерализацию и подавляет резорбцию костной ткани. Это происходит в результате действия гормона на костную ткань, где он активирует функцию остеобластов и усиливает процессы минерализации. Функция остеокластов, разрушающих костную ткань, напротив, угнетается.

В почках — снижает реабсорбцию кальция и усиливает обратное всасывание фосфатов.

В кишечнике эффекты в норме выражены очень слабо и заключаются в снижении всасывания кальция.

ПАРАТИРИН — гормон околощитовидных желез. Стимулом для выделения служит снижение концентрации кальция в крови ниже 2 мМоль/л. Инактивация гормона тоже происходит под влиянием концентрации кальция — при повышении концентрации иона в плазме просто происходит разрушение гормона. По физиологическим эффектам — антагонист кальцитонина, вместе с которым регулирует уровень кальция в крови. Рецепторы ПТГ — трансмембранные гликопротеины, связанные с G‑белком — в значительном количестве содержатся в костной ткани (остеобласты) и корковой части почек (эпителий извитых канальцев нефрона). Основной эффект паратирина — повышение концентрации кальция в крови (рисунок 20).

Рисунок 21. Эффекты паратиреоидного гормона,

Дата добавления: 2018-11-25 ; просмотров: 224 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

источник

Глюкоза — основной углевод крови. Концентрация глюкозы колеблется в течение суток в зависимости от частоты приема пищи, содержания углеводов в ней и интенсивности энерготрат от 3,3 до 5,5 ммоль/л — нормогликемия [2].

Гипер- и гипогликемия — состояния, при которых содержание глюкозы в крови оказывается выше или ниже этих величин.

Источниками глюкозы в крови являются:

Большинство углеводов, поступающих в организм с пищей, гидролизуется с образованием глюкозы, га­лактозы или фруктозы, которые через воротную вену поступают в печень. Галактоза и фруктоза быстро превращаются в печени в глюкозу.

2. Различные глюкозообразующие соединения, вступающие на путь глюконеогенеза. Эти соединения можно разделить на две группы: (1) со­единения, превращающиеся в глюкозу и не являю­щиеся продуктами ее метаболизма, например амино­кислоты и пропионат; (2) соединения, которые являю­тся продуктами частичного метаболизма глюкозы в ряде тканей; они переносятся в печень и почки, где из них ресинтезируется глюкоза. Так, лактат, обра­зующийся в скелетных мышцах и эритроцитах из глюкозы, транспортируется в печень и почки, где из него вновь образуется глюкоза, которая затем по­ступает в кровь и ткани. Этот процесс называется ци­клом Кори или циклом молочной кислоты. Источником глицерола, необходимого для син­теза триацилглицеролов в жировой ткани, является глюкоза крови, поскольку использование свободно­го глицерола в этой ткани затруднено [6]. Ацилглицеролы жировой ткани подвергаются постоянному гидролизу в результате которого образуется свобод­ный глицерол, который диффундирует из ткани в кровь. В печени и почках он вступает на путь глюконеогенеза и вновь превращается в глюкозу. Таким образом, постоянно функционирует цикл, в котором глюкоза из печени и почек транспортируется в жиро­вую ткань, а глицерол из этой ткани поступает в пе­чень и почки, где превращается в глюкозу.

Следует отметить, что среди аминокислот, транспортируемых при голодании из мышц в печень, преобладает аланин. Это позволило постулировать существование глюкозоаланинового цикла, по которому глюкоза поступает из печени в мышцы, а аланин—из мышц в печень, за счет чего обеспечи­вается перенос аминоазота из мышц в печень и «свободной энергии» из печени в мышцы [6]. Энергия, необ­ходимая для синтеза глюкозы из пирувата в печени, поступает за счет окисления жирных кислот.

Из выше изложенного следует, что в поддержании глюкозы в крови на определенном уровне осуществляется рядом органов и физиологических систем, а в частности наиболее важное место среди этих органов занимает печень. Можно считать, что сохра­нение постоянства концентрации сахара в крови есть результат одновремен­ного протекания двух процессов: потребления глюкозы тканями (исчезно­вения глюкозы из крови) и поступления ее в кровь из печени. В самом деле, у животных после удаления печени развивается тяжелая гипоглике­мия (пониженное содержание сахара в крови), сопровождающаяся су­дорогами, потерей сознания и другими симптомами, свидетельствующими о недостаточном снабжении мозга сахаром. Это происходит даже и в том случае, если в других органах, например в мышцах, имеются запасы гли­когена. Отсюда ясно, что глюкоза поступает в кровь в основном именно из печени. Так же поступление глюкозы осуществляется из кишечника в процессе пищеварения.

Экспериментально было показано, что даже изолированная печень обла­дает способностью реагировать на изменение концентрации сахара в пропускаемой через нее крови. Если в крови содержится сахара меньше 60—70 мг% (т. е. 60—70 мг в 100 мл крови), то в печени начинается распад гликогена с образованием глюкозы. В результате этого оттекающая от печени кровь обогащается глюкозой [5]. Если пропустить через печень кровь, содержание сахара в которой превышает 120 мг%, то глюкоза, напротив, задержи­вается в печени, накапливаясь в ней в форме гликогена. Это явление было открыто еще в 1853 г. Клодом Бернаром.[5]

В целом организме наиболее важное, основное значение для регуляции содержания сахара в крови имеет нервный механизм. Установ­лено, например, что снижение концентрации сахара в крови ниже 70—80 мг% приводит к рефлекторному возбуждению высших метаболических цен­тров, расположенных в гипоталамусе. Можно думать, что возбуждение метаболических центров вызывается при этом нервными импульсами, поступающими в центральную нервную систему с хеморецепторов клеток тканей и органов, находящихся в состоянии углеводного (энергетического) голодания.

Возбуждение, возникающее в центральной нервной системе, быстро распространяется по нервным путям в спинном мозгу, переходит в симпа­тический ствол и по симпатическому нерву достигает печени.

Таким образом, передача возбуждения из центров регуляции обмена центральной нервной системе к органу осуществляется в данном случае

в центральной нервной системе к органу осуществляется в данном случае при участии симпатического отдела вегетативной нервной системы (медиатор-норадреналин, постсинаптческие α2-адренорецепторы) [10].

В результате такого возбуждения нервной системы часть гликогена печени распадается с образованием глюкозы, причем отложения гликогена в печени перестают быть видимыми под микроскопом. Концентрация глю­козы в крови при этом повышается. Этот процесс часто называют «моби­лизацией» гликогена. По мере поступления из печени в кровь некоторого количества глюкозы и возвращения концентрации сахара в крови к исходному уровню импульсы, идущие в печень из нервной системы, ослабевают и расщепление гликогена задерживается. В регуляции углеводного обмена центральной нервной системой важная роль принадлежит коре головного мозга. Регуляция уровня сахара в крови осуществляется центральной нервной системой не только путем прямого воздействия на печень, но и через ряд эндокринных желез.

Роль желез внутренней секреции.

Большую роль в поддержании сахара в крови на постоянном уровне играют надпочечники. Импульсы, идущие со стороны центральной нервной системы, вызывают добавочное выделение адреналина, образующегося в мозговом веществе надпочечников. Адреналин с током крови доставляется в печень, где стимулирует расщепление гликогена. Действие адреналина реализуется через внесинаптические β2-адренорецепторы располагающиеся на плазмолемме гепатоцитов, трансдукция на эффекторные структуры происходит при участии Gs-белка, который активирует аденилатциклазу. Адреналин резко повышает активность фосфорилазы — фермента, играющего очень важную роль в процессе мобилизации гликогена. В результате этого содержание сахара в крови повы­шается [6].

В норме импульсы, идущие по нервным путям из центральной нервной системы, поддерживают секрецию адреналина в надпочечниках на опреде­ленном уровне. Возбуждение центральной нервной системы вызывает уси­ленное поступление адреналина в кровь, что в свою очередь приводит к по­вышению концентрации глюкозы в крови (возникает гипергликемия). Гипергликемию можно вызвать и введением адреналина в организм извне.

Подобная гипергликемия возникает и в результате сильных эмоциональных возбуждений (волнения, радостные и неприятные переживания, выраженные в сильной форме, — аффекты, возбуждения во время или перед выполнением усиленной умствен­ной или физической работы и т. п.). Во всех этих случаях возбуждение, начавшееся в коре больших полушарий, переходит на симпатический отдел нервной системы и приводит, как уже указывалось выше, к освобождению дополнительного количества адреналина в над­почечниках или близких к адреналину веществ — симпатинов (главным образом норадреналина и адреналина) в концевых симпатических нервных аппаратах. Таким об­разом, «эмоциональные» гипергликемии являются, в сущности, адрена­линовыми гипергликемиями. Эту форму гипергликемии надо рассматривать как биологи­ческое приспособление, обеспечивающее наилучшее питание органов глюкозой во время интенсивной работы.

Глюкокортикоиды (11-гидроксистероиды) секретируются корой надпочечников и играют важную роль в углеводном обмене. Введение этих стероидов усиливает глюконеогенез за счет интенсификации ка­таболизма белков в тканях, увеличения потребления аминокислот печенью, а также повышения активно­сти трансаминаз и других ферментов, участвующих в процессе глюконеогенеза в печени. Кроме того, глюкокортикоиды ингибируют утилизацию глюкозы во внепеченочных тканях. В рассмотренных случаях глюкокортикоиды действуют подобно антагонистаминсулина.

Глюкагон является гормоном, секретируемым А-клетками островков Лангерганса в поджелудочной железе (его секреция стимулируется гипогликемией). Когда по воротной вене глюкагон поступает в пе­чень, он, подобно адреналину, активирует фосфорилазу и вызывает гликогенолиз. Большая часть эндо­генного глюкагона задерживается в печени. В отли­чие от адреналина глюкагон не влияет на фосфорилазу мышц. Этот гормон усиливает также глюконеогенез из аминокислот и лактата. Гипергликемическин эффект глюкагона обусловлен как гликогенолизом, так и глюконеогенезом в печени [2,3,4.6].

Инсулин. В состоянии гипергликимии увеличивается поступление глюкозы как в печень, так и в периферические ткани. Центральную роль в регуляции концетрации глюкозы в крови играет гормон инсулин. Он синтезируется в поджелудочной железой В-клетками островков Лангерганса, и его поступление в кровь увеличивается при гипергликемии. Концентрация этого гормона в крови изменяется парал­лельно концентрации глюкозы; введение его быстро вызывает гипогликемию. Инсулин быстро вызывает уве­личение поглощения глюкозы жировой тканью и мышцами за счет ускорения транспорта глюкозы через клеточные мембраны путем перемещения пере­носчиков глюкозы из цитоплазмы в плазматическую мембрану. Однако инсулин не оказывает прямого действия на проникновение глюкозы в клетки пече­ни; это согласуется с данными о том, что скорость метаболизма глюкозы клетками печени не лимити­руется скоростью ее прохождения через клеточные мембраны. Инсулин, однако, действует опосредо­ванно, влияя на активность ферментов, участвую­щих в гликолизе и гликогенолизе [6].

Кроме надпочечников и поджелудочной железы, как уже указывалось, на углеводный обмен существенное влияние оказывают: гипофиз — гормон роста (соматотропный гормон) ищитовидная железа (гормон —тироксин). Все эти железытакже находящиеся под контролем центральной нервной системы, своими гормонами вызывают повышение содержания сахара в крови (гипергликимию). Поэтому всю эту группу гормонов иногда называют диабетогенными гормонами [2,3].

Гормон щитовидной железы также влияет на содержание глюкозы в крови. Экспе­риментальные данные свидетельствуют о том, что тироксин обладает диабетогенным действием, а уда­ление щитовидной железы препятствует развитию диабета. Было отмечено, что гликоген полностью отсутствует в печени животных с тиреотоксикозом. У людей с усиленной функцией щитовидной железы содержание сахара в крови при голодании повыше­но, а у людей с пониженной функцией щитовидной железы оно снижено. При гипертиреозе глюкоза, по-видимому, расходуется с нормальной или повышен­ной скоростью, а при гипотиреозе способность ути­лизировать глюкозу понижена. Следует отметить, что пациенты с гипофункцией щитовидной железы менее чувствительны к действию инсулина, чем здо­ровые люди и пациенты с гипертиреозом [6].

Передняя доля гипофиза секретирует гормоны, действие которых противоположно действию инсулина, т.е. они повышают уровень глюкозы в крови. К ним относятся гормон роста, АКТГ (кортикотропин) и, вероятно, другие «диабетогенные» факторы Гипогликемия стимулирует секрецию гормона ро­ста. Он вызывает уменьшение поступления глюкозы в некоторые ткани, например в мышцы. Действие гормона роста является до некоторой степени опос­редованным, поскольку он стимулирует мобилиза­цию из жировой ткани свободных жирных кислот, которые являются ингибиторами потребления глю­козы. Длительное введение гормона роста приводит к диабету. Вызывая гипергликемию, он стимулирует постоянную секрецию инсулина, что в конечном сче­те приводит к истощению В-клеток [6].

источник