Роль печени в регуляции сахара в крови

Из общего количества поступающей из кишечника глюкозы печень извлекает ее большую часть и тратит: 10-15% от этого количества на синтез гликогена, 60% на окислительный распад, 30% на синтез жирных кислот.

Печень поддерживает концентрацию сахара в крови на таком уровне, который обеспечивает непрерывное снабжение глюкозой всех тканей. Это достигается регуляцией соотношения между синтезом и распадом гликогена, депонируемого печенью. В среднем печень человека содержит до 100 г гликогена. При всасывании глюкозы из кишечника содержание её в крови воротной вены может повышаться до 18-20 ммоль/л, в периферической крови в два раза меньше. Глюкоза превращается в печени в гликоген и депонируется, а также используется для получения энергии. Если после этих превращений ещё имеется избыток глюкозы, она превращается в жир. При голодании печень поддерживает постоянный уровень сахара в крови, прежде всего расщеплением гликогена, и если этого недостаточно – глюконеогенезом. Инсулин, проходя через печень, также оказывает влияние на уровень сахара в крови и на образование и распад гликогена в печени.

Глюкозо-6-фосфат играет центральную роль в превращениях углеводов и саморегуляции углеводного обмена. В печени глюкозо-6-фосфат резко тормозит фосфоролитическое расщепление гликогена, активирует ферментативный транспорт глюкозы с уридинфосфатглюкозы на молекулу строящегося гликогена, является субстратом для окислительного превращения по пентозофосфатному пути. При окислении глюкозо-6-фосфата образуется восстановленная форма НАДФ – необходимого кофермента восстановительных синтезов жирных кислот и холестерина и превращения глюкозо-6-фосфата в фосфопентозы – обязательного компонента нуклеотидов и нуклеиновых кислот. Кроме того, глюкозо-6-фосфат является субстратом для дальнейших гликолитических превращений, приводящих к образованию пировиноградной и молочной кислот. Этот процесс обеспечивает организм соединениями, необходимыми для биосинтезов, и играет важную роль в обмене энергии. Наконец, расщепление глюкозо-6-фосфата обеспечивает поступление в кровь свободной глюкозы, доставляемой током крови во все органы и ткани.

В печени активно протекает глюконеогенез, при котором предшественниками глюкозы являются пируват, аланин (поступающий из мышц), глицерол (из жировой ткани) и ряд гликогенных аминокислот (поступающих с пищей).

Высокие концентрации АТФ и цитрата тормозят гликолиз путем аллостерической регуляции фермента фосфофруктокиназы.АТФ тормозит пируваткиназу. Ингибитором пируваткиназы является ацетил-КоА. Все эти метаболиты образуются при распаде глюкозы (торможение конечным продуктом). АМФ активирует расщепление гликогена и тормозит глюконеогенез.

Важную роль в обмене веществ в печени играет фруктозо-2,6-дифосфат. Он образуется в незначительных количествах из фруктозо-6-фосфата и выполняет регуляторную функцию: стимулирует гликолиз путем активации фосфофруктокиназы и подавляет глюконеогенез с помощью торможения фруктозо-1,6-дифосфатазы.

При многих патологических состояниях, в частности при сахарном диабете, происходят изменения в функционировании и регуляции системы фруктозо-2,6-дифосфат. При экспериментальном диабете у крыс содержание в гепатоцитах фруктозо-2,6-дифосфата снижено. Следовательно, снижается скорость гликолиза и усиливается глюконеогенез. Увеличение концентрации глюкагона и уменьшение содержания инсулина обусловливают повышение концентрации цАМФ в ткани печени и усиление цАМФ-зависимого фосфорилирования бифункционального фермента, что приводит к снижению его киназной и повышению бисфосфатазной активности.

Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: На стипендию можно купить что-нибудь, но не больше. 8743 — | 7143 — или читать все.

источник

Основная роль печени в углеводном обмене заключается в обеспечении постоянства концентрации глюкозы в крови. Это достигается регуляцией между синтезом и распадом гликогена, депонируемого в печени.

В печени синтез гликогена и его регуляция в основном аналогичны тем процессам, которые протекают в других органах и тканях, в частности в мышечной ткани. Синтез гликогена из глюкозы обеспечивает в норме временный резерв углеводов, необходимый для поддержания концентрации глюкозы в крови в тех случаях, если ее содержание значительно уменьшается (например, у человека это происходит при недостаточном поступлении углеводов с пищей или в период ночного «голодания»).

Необходимо подчеркнуть важную роль фермента глюкокиназы в процессе утилизации глюкозы печенью. Глюкокиназа, подобно гексокиназе, катализирует фосфорилирование глюкозы с образованием глюкозо-6-фосфата, при этом активность глюкокиназы в печени почти в 10 раз превышает активность гексокиназы. Важное различие между этими двумя ферментами заключается в том, что глюкокиназа в противоположность гексокиназе имеет высокое значение КМ для глюкозы и не ингибируется глюкозо-6-фосфатом.

После приема пищи содержание глюкозы в воротной вене резко возрастает: в тех же пределах увеличивается и ее внутрипеченочная концентрация . Повышение концентрации глюкозы в печени вызывает существенное увеличение активности глюкокиназы и автоматически увеличивает поглощение глюкозы печенью (образовавшийся глюкозо-6-фосфат либо затрачивается на синтез гликогена, либо расщепляется).

Считают, что основная роль печени – расщепление глюкозы – сводится прежде всего к запасанию метаболитов-предшественников, необходимых для биосинтеза жирных кислот и глицерина, и в меньшей степени к окислению ее до СО2 и Н2О. Синтезированные в печени триглицериды в норме выделяются в кровь в составе липопротеинов и транспортируются в жировую ткань для более «постоянного» хранения.

В реакциях пентозофосфатного пути в печени образуется НАДФН, используемый для восстановительных реакций в процессах синтеза жирных кислот, холестерина и других стероидов. Кроме того, при этом образуются пентозофосфаты, необходимые для синтеза нуклеиновых кислот.

Наряду с утилизацией глюкозы в печени происходит и ее образование. Непосредственным источником глюкозы в печени служит гликоген. Распад гликогена в печени происходит в основном фосфоролитическим путем. В регуляции скорости гликогенолиза в печени большое значение имеет система циклических нуклеотидов. Кроме того, глюкоза в печени образуется также в процессе глюконеогенеза.

Основными субстратами глюконеогенеза служат лактат, глицерин и аминокислоты. Принято считать, что почти все аминокислоты, за исключением лейцина, могут пополнять пул предшественников глюконеогенеза.

При оценке углеводной функции печени необходимо иметь в виду, что соотношение между процессами утилизации и образования глюкозы регулируется прежде всего нейрогуморальным путем при участии желез внутренней секреции.

Центральную роль в превращениях глюкозы и саморегуляции углеводного обмена в печени играет глюкозо-6-фосфат. Он резко тормозит фосфоролитическое расщепление гликогена, активирует ферментативный перенос глюкозы с уридиндифосфоглюкозы на молекулу синтезирующегося гликогена, является субстратом для дальнейших гликолитических превращений, а также окисления глюкозы, в том числе по пентозофосфатному пути. Наконец, расщепление глюкозо-6-фосфата фосфатазой обеспечивает поступление в кровь свободной глюкозы, доставляемой током крови во все органы и ткани (рис. 16.1).

Как отмечалось, наиболее мощным аллостерическим активатором фосфофруктокиназы-1 и ингибитором фруктозо-1,6-бисфосфатазы печени

Рис. 16.1. Участие глюкозо-6-фосфата в метаболизме углеводов.

Рис. 16.2. Гормональная регуляция системы фруктозо-2,6-бисфосфата (Ф-2,6-Р2) в печени при участии цАМФ-зависимых протеинкиназ.

является фруктозо-2,6-бисфосфат (Ф-2,6-Р2). Повышение в гепатоцитах уровня Ф-2,6-Р2 способствует усилению гликолиза и уменьшению скорости глюконеогенеза. Ф-2,6-Р2 снижает ингибирующее действие АТФ на фосфо-фруктокиназу-1 и увеличивает сродство этого фермента к фруктозо-6-фосфату. При ингибировании фруктозо-1,6-бисфосфатазы Ф-2,6-Р2 возрастает значение КМ для фруктозо-1,6-бисфосфата. Содержание Ф-2,6-Р2 в печени, сердце, скелетной мускулатуре и других тканях контролируется бифункциональным ферментом, который осуществляет синтез Ф-2,6-Р2 из фруктозо-6-фосфата и АТФ и гидролиз его до фруктозо-6-фосфата и Pi, т.е. фермент одновременно обладает и киназной, и бисфосфатазной активностью. Бифункциональный фермент (фосфофруктокиназа-2/фруктозо-2,6-бисфосфатаза), выделенный из печени крысы, состоит из двух идентичных субъединиц с мол. массой 55000, каждая из которых имеет два различных каталитических центра. Киназный домен при этом расположен на N-конце, а бисфосфатазный – на С-конце каждой из полипептидных цепей. Известно также, что бифункциональный фермент печени является прекрасным субстратом для цАМФ-зависимой протеинкиназы А. Под действием про-теинкиназы А происходит фосфорилирование остатков серина в каждой из субъединиц бифункционального фермента, что приводит к снижению его киназной и повышению бисфосфатазной активности. Заметим, что в регуляции активности бифункционального фермента существенная роль принадлежит гормонам, в частности глюкагону (рис. 16.2).

При многих патологических состояниях, в частности при сахарном диабете, отмечаются существенные изменения в функционировании и регуляции системы Ф-2,6-Р2. Установлено, что при экспериментальном (стептозотоциновом) диабете у крыс на фоне резкого увеличения уровня глюкозы в крови и моче в гепатоцитах содержание Ф-2,6-Р2 снижено. Следовательно, снижается скорость гликолиза и усиливается глюконео-генез. Данный факт имеет свое объяснение. Возникающие у крыс при диабете нарушения гормонального фона: увеличение концентрации глю-кагона и уменьшение содержания инсулина – обусловливают повышение концентрации цАМФ в ткани печени, усиление цАМФ-зависимого фосфорилирования бифункционального фермента, что в свою очередь приводит к снижению его киназной и повышению бисфосфатазной активности. Таков может быть механизм снижения уровня Ф-2,6-Р2 в гепатоцитах при экспериментальном диабете. По-видимому, существуют и другие механизмы, ведущие к снижению уровня Ф-2,6-Р2 в гепатоцитах при стрептозото-циновом диабете. Показано, что при экспериментальном диабете в ткани печени имеет место снижение активности глюкокиназы (возможно, и снижение количества данного фермента). Это приводит к падению скорости фосфорилирования глюкозы, а затем к снижению содержания фруктозо-6-фосфата – субстрата бифункционального фермента. Наконец, в последние годы было показано, что при стрептозотоциновом диабете уменьшается количество мРНК бифункционального фермента в гепатоцитах и как следствие – снижается уровень Ф-2,6-Р2 в ткани печени, усиливается глюко-неогенез. Все это еще раз подтверждает положение, что Ф-2,6-Р2, являясь важным компонентом в цепи передачи гормонального сигнала, выступает в роли третичного посредника при действии гормонов, прежде всего на процессы гликолиза и глюконеогенеза.

Рассматривая промежуточный обмен углеводов в печени, необходимо также остановиться на превращениях фруктозы и галактозы. Поступающая в печень фруктоза может фосфорилироваться в положении 6 до фруктозо-6-фосфата под действием гексокиназы, обладающей относительной специфичностью и катализирующей фосфорилирование, кроме глюкозы и фруктозы, еще и маннозы. Однако в печени существует и другой путь: фруктоза способна фосфорилироваться при участии более специфического фермента – фруктокиназы. В результате образуется фруктозо-1-фосфат. Эта реакция не блокируется глюкозой. Далее фруктозо-1-фосфат под действием альдолазы расщепляется на две триозы: диоксиацетонфосфат и глицераль-дегид. Под влиянием соответствующей киназы (триокиназы) и при участии АТФ глицеральдегид подвергается фосфорилированию до глицеральдегид-3-фосфата. Последний (в него легко переходит и диоксиацетонфосфат) подвергается обычным превращениям, в том числе с образованием в качестве промежуточного продукта пировиноградной кислоты.

Следует отметить, что при генетически обусловленной нетолерантности к фруктозе или недостаточной активности фруктозо-1,6-бисфосфатазы наблюдается индуцируемая фруктозой гипогликемия, возникающая вопреки наличию больших запасов гликогена. Вероятно, фруктозо-1-фосфат и фруктозо-1,6-бисфосфат ингибируют фосфорилазу печени по аллосте-рическому механизму.

Известно также, что метаболизм фруктозы по гликолитическому пути в печени происходит гораздо быстрее, чем метаболизм глюкозы. Для метаболизма глюкозы характерна стадия, катализируемая фосфофрукто-киназой-1. Как известно, на этой стадии осуществляется метаболический контроль скорости катаболизма глюкозы. Фруктоза минует эту стадию, что позволяет ей интенсифицировать в печени процессы метаболизма, ведущие к синтезу жирных кислот, их эстерификацию и секрецию липопротеинов очень низкой плотности; в результате может увеличиваться концентрация триглицеридов в плазме крови.

Галактоза в печени сначала фосфорилируется при участии АТФ и фермента галактокиназы с образованием галактозо-1-фосфата. Для га-лактокиназы печени плода и ребенка характерны значения КМ и Vмaкс, примерно в 5 раз превосходящие таковые у ферментов взрослого человека. Большая часть галактозо-1-фосфата в печени превращается в ходе реакции, катализируемой гексозо-1-фосфат-уридилилтрансферазой:

УДФ-глюкоза + Галактозо-1-фосфат –> УДФ-галактоза + Глюкозо-1-фосфат.

Это уникальная трансферазная реакция возвращения галактозы в основное русло углеводного метаболизма. Наследственная утрата гексозо-1-фосфат-уридилилтрансферазы приводит к галактоземии – заболеванию, для которого характерны умственная отсталость и катаракта хрусталика. В этом случае печень новорожденных теряет способность метаболизи-ровать D-галактозу, входящую в состав лактозы молока.

источник

Глюкоза — основной углевод крови. Концентрация глюкозы колеблется в течение суток в зависимости от частоты приема пищи, содержания углеводов в ней и интенсивности энерготрат от 3,3 до 5,5 ммоль/л — нормогликемия [2].

Гипер- и гипогликемия — состояния, при которых содержание глюкозы в крови оказывается выше или ниже этих величин.

Источниками глюкозы в крови являются:

Большинство углеводов, поступающих в организм с пищей, гидролизуется с образованием глюкозы, га­лактозы или фруктозы, которые через воротную вену поступают в печень. Галактоза и фруктоза быстро превращаются в печени в глюкозу.

2. Различные глюкозообразующие соединения, вступающие на путь глюконеогенеза. Эти соединения можно разделить на две группы: (1) со­единения, превращающиеся в глюкозу и не являю­щиеся продуктами ее метаболизма, например амино­кислоты и пропионат; (2) соединения, которые являю­тся продуктами частичного метаболизма глюкозы в ряде тканей; они переносятся в печень и почки, где из них ресинтезируется глюкоза. Так, лактат, обра­зующийся в скелетных мышцах и эритроцитах из глюкозы, транспортируется в печень и почки, где из него вновь образуется глюкоза, которая затем по­ступает в кровь и ткани. Этот процесс называется ци­клом Кори или циклом молочной кислоты. Источником глицерола, необходимого для син­теза триацилглицеролов в жировой ткани, является глюкоза крови, поскольку использование свободно­го глицерола в этой ткани затруднено [6]. Ацилглицеролы жировой ткани подвергаются постоянному гидролизу в результате которого образуется свобод­ный глицерол, который диффундирует из ткани в кровь. В печени и почках он вступает на путь глюконеогенеза и вновь превращается в глюкозу. Таким образом, постоянно функционирует цикл, в котором глюкоза из печени и почек транспортируется в жиро­вую ткань, а глицерол из этой ткани поступает в пе­чень и почки, где превращается в глюкозу.

Следует отметить, что среди аминокислот, транспортируемых при голодании из мышц в печень, преобладает аланин. Это позволило постулировать существование глюкозоаланинового цикла, по которому глюкоза поступает из печени в мышцы, а аланин—из мышц в печень, за счет чего обеспечи­вается перенос аминоазота из мышц в печень и «свободной энергии» из печени в мышцы [6]. Энергия, необ­ходимая для синтеза глюкозы из пирувата в печени, поступает за счет окисления жирных кислот.

Из выше изложенного следует, что в поддержании глюкозы в крови на определенном уровне осуществляется рядом органов и физиологических систем, а в частности наиболее важное место среди этих органов занимает печень. Можно считать, что сохра­нение постоянства концентрации сахара в крови есть результат одновремен­ного протекания двух процессов: потребления глюкозы тканями (исчезно­вения глюкозы из крови) и поступления ее в кровь из печени. В самом деле, у животных после удаления печени развивается тяжелая гипоглике­мия (пониженное содержание сахара в крови), сопровождающаяся су­дорогами, потерей сознания и другими симптомами, свидетельствующими о недостаточном снабжении мозга сахаром. Это происходит даже и в том случае, если в других органах, например в мышцах, имеются запасы гли­когена. Отсюда ясно, что глюкоза поступает в кровь в основном именно из печени. Так же поступление глюкозы осуществляется из кишечника в процессе пищеварения.

Экспериментально было показано, что даже изолированная печень обла­дает способностью реагировать на изменение концентрации сахара в пропускаемой через нее крови. Если в крови содержится сахара меньше 60—70 мг% (т. е. 60—70 мг в 100 мл крови), то в печени начинается распад гликогена с образованием глюкозы. В результате этого оттекающая от печени кровь обогащается глюкозой [5]. Если пропустить через печень кровь, содержание сахара в которой превышает 120 мг%, то глюкоза, напротив, задержи­вается в печени, накапливаясь в ней в форме гликогена. Это явление было открыто еще в 1853 г. Клодом Бернаром.[5]

В целом организме наиболее важное, основное значение для регуляции содержания сахара в крови имеет нервный механизм. Установ­лено, например, что снижение концентрации сахара в крови ниже 70—80 мг% приводит к рефлекторному возбуждению высших метаболических цен­тров, расположенных в гипоталамусе. Можно думать, что возбуждение метаболических центров вызывается при этом нервными импульсами, поступающими в центральную нервную систему с хеморецепторов клеток тканей и органов, находящихся в состоянии углеводного (энергетического) голодания.

Возбуждение, возникающее в центральной нервной системе, быстро распространяется по нервным путям в спинном мозгу, переходит в симпа­тический ствол и по симпатическому нерву достигает печени.

Таким образом, передача возбуждения из центров регуляции обмена центральной нервной системе к органу осуществляется в данном случае

в центральной нервной системе к органу осуществляется в данном случае при участии симпатического отдела вегетативной нервной системы (медиатор-норадреналин, постсинаптческие α2-адренорецепторы) [10].

В результате такого возбуждения нервной системы часть гликогена печени распадается с образованием глюкозы, причем отложения гликогена в печени перестают быть видимыми под микроскопом. Концентрация глю­козы в крови при этом повышается. Этот процесс часто называют «моби­лизацией» гликогена. По мере поступления из печени в кровь некоторого количества глюкозы и возвращения концентрации сахара в крови к исходному уровню импульсы, идущие в печень из нервной системы, ослабевают и расщепление гликогена задерживается. В регуляции углеводного обмена центральной нервной системой важная роль принадлежит коре головного мозга. Регуляция уровня сахара в крови осуществляется центральной нервной системой не только путем прямого воздействия на печень, но и через ряд эндокринных желез.

Роль желез внутренней секреции.

Большую роль в поддержании сахара в крови на постоянном уровне играют надпочечники. Импульсы, идущие со стороны центральной нервной системы, вызывают добавочное выделение адреналина, образующегося в мозговом веществе надпочечников. Адреналин с током крови доставляется в печень, где стимулирует расщепление гликогена. Действие адреналина реализуется через внесинаптические β2-адренорецепторы располагающиеся на плазмолемме гепатоцитов, трансдукция на эффекторные структуры происходит при участии Gs-белка, который активирует аденилатциклазу. Адреналин резко повышает активность фосфорилазы — фермента, играющего очень важную роль в процессе мобилизации гликогена. В результате этого содержание сахара в крови повы­шается [6].

В норме импульсы, идущие по нервным путям из центральной нервной системы, поддерживают секрецию адреналина в надпочечниках на опреде­ленном уровне. Возбуждение центральной нервной системы вызывает уси­ленное поступление адреналина в кровь, что в свою очередь приводит к по­вышению концентрации глюкозы в крови (возникает гипергликемия). Гипергликемию можно вызвать и введением адреналина в организм извне.

Подобная гипергликемия возникает и в результате сильных эмоциональных возбуждений (волнения, радостные и неприятные переживания, выраженные в сильной форме, — аффекты, возбуждения во время или перед выполнением усиленной умствен­ной или физической работы и т. п.). Во всех этих случаях возбуждение, начавшееся в коре больших полушарий, переходит на симпатический отдел нервной системы и приводит, как уже указывалось выше, к освобождению дополнительного количества адреналина в над­почечниках или близких к адреналину веществ — симпатинов (главным образом норадреналина и адреналина) в концевых симпатических нервных аппаратах. Таким об­разом, «эмоциональные» гипергликемии являются, в сущности, адрена­линовыми гипергликемиями. Эту форму гипергликемии надо рассматривать как биологи­ческое приспособление, обеспечивающее наилучшее питание органов глюкозой во время интенсивной работы.

Глюкокортикоиды (11-гидроксистероиды) секретируются корой надпочечников и играют важную роль в углеводном обмене. Введение этих стероидов усиливает глюконеогенез за счет интенсификации ка­таболизма белков в тканях, увеличения потребления аминокислот печенью, а также повышения активно­сти трансаминаз и других ферментов, участвующих в процессе глюконеогенеза в печени. Кроме того, глюкокортикоиды ингибируют утилизацию глюкозы во внепеченочных тканях. В рассмотренных случаях глюкокортикоиды действуют подобно антагонистаминсулина.

Глюкагон является гормоном, секретируемым А-клетками островков Лангерганса в поджелудочной железе (его секреция стимулируется гипогликемией). Когда по воротной вене глюкагон поступает в пе­чень, он, подобно адреналину, активирует фосфорилазу и вызывает гликогенолиз. Большая часть эндо­генного глюкагона задерживается в печени. В отли­чие от адреналина глюкагон не влияет на фосфорилазу мышц. Этот гормон усиливает также глюконеогенез из аминокислот и лактата. Гипергликемическин эффект глюкагона обусловлен как гликогенолизом, так и глюконеогенезом в печени [2,3,4.6].

Инсулин. В состоянии гипергликимии увеличивается поступление глюкозы как в печень, так и в периферические ткани. Центральную роль в регуляции концетрации глюкозы в крови играет гормон инсулин. Он синтезируется в поджелудочной железой В-клетками островков Лангерганса, и его поступление в кровь увеличивается при гипергликемии. Концентрация этого гормона в крови изменяется парал­лельно концентрации глюкозы; введение его быстро вызывает гипогликемию. Инсулин быстро вызывает уве­личение поглощения глюкозы жировой тканью и мышцами за счет ускорения транспорта глюкозы через клеточные мембраны путем перемещения пере­носчиков глюкозы из цитоплазмы в плазматическую мембрану. Однако инсулин не оказывает прямого действия на проникновение глюкозы в клетки пече­ни; это согласуется с данными о том, что скорость метаболизма глюкозы клетками печени не лимити­руется скоростью ее прохождения через клеточные мембраны. Инсулин, однако, действует опосредо­ванно, влияя на активность ферментов, участвую­щих в гликолизе и гликогенолизе [6].

Кроме надпочечников и поджелудочной железы, как уже указывалось, на углеводный обмен существенное влияние оказывают: гипофиз — гормон роста (соматотропный гормон) ищитовидная железа (гормон —тироксин). Все эти железытакже находящиеся под контролем центральной нервной системы, своими гормонами вызывают повышение содержания сахара в крови (гипергликимию). Поэтому всю эту группу гормонов иногда называют диабетогенными гормонами [2,3].

Гормон щитовидной железы также влияет на содержание глюкозы в крови. Экспе­риментальные данные свидетельствуют о том, что тироксин обладает диабетогенным действием, а уда­ление щитовидной железы препятствует развитию диабета. Было отмечено, что гликоген полностью отсутствует в печени животных с тиреотоксикозом. У людей с усиленной функцией щитовидной железы содержание сахара в крови при голодании повыше­но, а у людей с пониженной функцией щитовидной железы оно снижено. При гипертиреозе глюкоза, по-видимому, расходуется с нормальной или повышен­ной скоростью, а при гипотиреозе способность ути­лизировать глюкозу понижена. Следует отметить, что пациенты с гипофункцией щитовидной железы менее чувствительны к действию инсулина, чем здо­ровые люди и пациенты с гипертиреозом [6].

Передняя доля гипофиза секретирует гормоны, действие которых противоположно действию инсулина, т.е. они повышают уровень глюкозы в крови. К ним относятся гормон роста, АКТГ (кортикотропин) и, вероятно, другие «диабетогенные» факторы Гипогликемия стимулирует секрецию гормона ро­ста. Он вызывает уменьшение поступления глюкозы в некоторые ткани, например в мышцы. Действие гормона роста является до некоторой степени опос­редованным, поскольку он стимулирует мобилиза­цию из жировой ткани свободных жирных кислот, которые являются ингибиторами потребления глю­козы. Длительное введение гормона роста приводит к диабету. Вызывая гипергликемию, он стимулирует постоянную секрецию инсулина, что в конечном сче­те приводит к истощению В-клеток [6].

источник

Особая роль в регуляции обмена углеводов принадлежит печени. Здесь протекают следующие процессы:

Активно идет распад и синтез гликогена (за счет чего поддерживается нормальный уровень глюкозы в крови).

Катализация инактивации и обезвреживания глюкокортикоидов.

Активация или инактивация синтеза инсулиназы.

Синтез глюкозы из фруктозы и галактозы.

Аэробный и анаэробный распад глюкозы. Продукты этих процессов используются для синтеза ВЖК, холестерина, глицерина, нуклеиновых кислот и т.д.

Значение углеводов для организма определяется их многообразными функциями, и нарушения углеводного обмена отражаются на состоянии всего организма.

При патологии обмена углеводов могут наблюдаться следующие нарушения:

Гипергликемия – повышение уровня глюкозы в крови.

Гипогликемия – понижение уровня глюкозы в крови.

Глюкозурия – появление глюкозы в крови.

Кетонемия – повышение уровня кетоновых тел в крови.

Кетонурия – повышение уровня кетоновых тел в моче.

Ацидоз – изменение рН крови в кислую сторону.

Гипергликемия имеет инсулярное или экстраинсулярное происхождение.

Схема № 9 . Классификация гипергликемий.

Гипергликемия.

Инсулярная Экстраинсулярная

Физиологическая Патологическая

Гиперфункция бетта-клеток островков Лангерганса

Поражение паренхимы поджелудочной железы.

Заболевания желез внутренней секреции.

Снижение обмена глюкозы в периферических тканях

Инсулярная – связаны со снижением выработки инсулина в поджелудочной железе в результате следующих причин:

Гиперфункция бетта-клеток островков Лангерганса является причиной сахарного диабета.

Поражение паренхимы поджелудочной железы развивается при остром панкреатите, панкреатическом циррозе и т.д. Может привести к сахарному диабету.

Экстраинсулярные – не связаны с выработкой инсулина и могут быть разделены следующим образом:

Физиологические: алиментарные (возникают при избытке углеводной пищи) и нейрогенные (связаны с различными эмоциональными состояниями, например, страх, радость).

Патологические – проявляются при различных заболеваниях:

Заболевания желез внутренней секреции (опухоли передней доли гипофиза, надпочечников, тиреотоксикоз и т.д.).

Токсикозы и травмы различного происхождения (токсикозы беременных, отравления фосфором, угарным газом и т.д.).

Снижение обмена глюкозы в периферических тканях, например при наркозе, воспалительных процессах, септических состояниях, вследствие нарушений функций ферментных систем, заболеваниях печени.

Гипогликемия обычно клинически проявляется слабостью, потерей сознания, диффузным потоотделением, снижением деятельности клеток нервной системы. Признаки начинают проявляться при уровне глюкозы в крови 2,4 ммоль/л и становятся клинически выраженными при 2,1 ммоль/л.

Гипогликемия может развиваться при следующих состояниях:

Передозировке инсулина у больных сахарным диабетом.

Повышенная секреция инсулина при аденоме поджелудочной железы.

Пониженная выработка контринсулярных гормонов при заболеваниях желез внутренней секреции (гипотериоз, аддисонова болезнь и др.).

Нарушения переваривания и всасывания углеводов в ЖКТ (энтероколиты, заболевания желчных путей).

Поражение почек (нефриты, нефрозы).

Поражения печени (гепатиты, жировая инфильтрация печени, гликогенозы).

Воспалительные и инфекционные заболевания (бронхопневмония)

При нарушении обмена углеводов развивается ряд заболеваний, наиболее часто встречаются сахарный диабет и гликогенозы.

Сахарный диабет составляет 70 % от всех заболеваний, связанных с нарушением работы эндокринных желез. По определению Международного Экспертного Комитета по диагностике и классификации сахарного диабета (1997), сахарный диабет – это группа метаболических (обменных) заболеваний, характеризующихся гипергликемией, которая является результатом дефектов секреции инсулина, действия инсулина или обоих этих факторов.

Нарушение выработки инсулина бетта-клетками островков Лангерганса (выработка снижена или вообще отсутствует).

Снижение тканевого ответа на инсулин в одной или нескольких точках на сложных путях действия инсулина (дефекты действия инсулина или резистентность к действию инсулина).

Диабет I типа – вызван нарушением бетта-клеток, обычно ведущей к полному дефициту инсулина. Иногда называют инсулинозависимым диабетом ИЗСД.

Диабет II типа – комбинация резистентности к инсулину и повышением выработки глюкагона. Данный вид является более распространенным и иногда называется инсулинонезависимым сахарным диабетом ИНСД.

Основные признаки и лечение сахарного диабета обеих типов представлены в таблице.

Таблица № 7. Основные признаки сахарного диабета I и II типов.

источник

Основная роль печени в обмене углеводов заключается в поддержании постоянного уровня глюкозы в крови. Это осуществляется путём регуляции соотношения процессов образования и утилизации глюкозы в печени.

В клетках печени содержится фермент глюкокиназа, катализирующий реакцию фосфорилирования глюкозы с образованием глюкозо-6-фосфата. Глюкозо-6-фосфат является ключевым метаболитом углеводного обмена; основные пути его превращения представлены на рисунке 1.

31.2.1. Пути утилизации глюкозы. После приёма пищи большое количество глюкозы поступает в печень по воротной вене. Эта глюкоза используется прежде всего для синтеза гликогена (схема реакций приводится на рисунке 2). Содержание гликогена в печени здоровых людей обычно составляет от 2 до 8% массы этого органа.

Гликолиз и пентозофосфатный путь окисления глюкозы в печени служат в первую очередь поставщиками метаболитов-предшественников для биосинтеза аминокислот, жирных кислот, глицерола и нуклеотидов. В меньшей степени окислительные пути превращения глюкозы в печени являются источниками энергии для обеспечения биосинтетических процессов.

Рисунок 1. Главные пути превращения глюкозо-6-фосфата в печени. Цифрами обозначены: 1 — фосфорилирование глюкозы; 2 — гидролиз глюкозо-6-фосфата; 3 — синтез гликогена; 4 — мобилизация гликогена; 5 — пентозофосфатный путь; 6 — гликолиз; 7 — глюконеогенез.

Рисунок 2. Схема реакций синтеза гликогена в печени.

Рисунок 3. Схема реакций мобилизации гликогена в печени.

31.2.2. Пути образования глюкозы. В некоторых условиях (при голодании низкоуглеводной диете, длительной физической нагрузке) потребность организма в углеводах превышает то количество, которое всасывается из желудочно-кишечного тракта. В таком случае образование глюкозы осуществляется с помощью глюкозо-6-фосфатазы, катализирующей гидролиз глюкозо-6-фосфата в клетках печени. Непосредственным источником глюкозо-6-фосфата служит гликоген. Схема мобилизации гликогена представлена на рисунке 3.

Мобилизация гликогена обеспечивает потребности организма человека в глюкозе на протяжении первых 12 — 24 часов голодания. В более поздние сроки основным источником глюкозы становится глюконеогенез — биосинтез из неуглеводных источников.

Основными субстратами для глюконеогенеза служат лактат, глицерол и аминокислоты (за исключением лейцина). Эти соединения сначала превращаются в пируват или оксалоацетат — ключевые метаболиты глюконеогенеза.

Глюконеогенез — процесс, обратный гликолизу. При этом барьеры, создаваемые необратимыми реакциями гликолиза, преодолеваются при помощи специальных ферментов, катализирующих обходные реакции (см. рисунок 4).

Из других путей обмена углеводов в печени следует отметить превращение в глюкозу других пищевых моносахаридов — фруктозы и галактозы.

Рисунок 4. Гликолиз и глюконеогенез в печени.

Ферменты, катализирующие необратимые реакции гликолиза: 1 — глюкокиназа; 2 — фосфофруктокиназа; 3 — пируваткиназа.

Ферменты, катализирующие обходные реакции глюконеогенеза: 4 -пируваткарбоксилаза; 5 — фосфоенолпируваткарбоксикиназа; 6 -фруктозо-1,6-дифосфатаза; 7 — глюкозо-6-фосфатаза.

Источники глюкозы: мобилизация гликогена, глюконеогенез,другие моносахариды

источник

Из общего количества поступающей из кишечника глюкозы печень извлекает ее большую часть и тратит 10-15% от этого количества на синтез гликогена, 60% — на окислительный распад, 30% — на синтез жирных кислот.

Печень поддерживает концентрацию сахара в крови на таком уровне, который обеспечивает непрерывное снабжение глюкозой всех тканей. Это достигается регуляцией соотношения между синтезом и распадом гликогена, депонируемого печенью. В среднем печень человека содержит до 100 г гликогена. При всасывании глюкозы из кишечника содержание её в крови воротной вены может повышаться до 18-20 ммоль/л, в периферической крови в два раза меньше. Глюкоза превращается в печени в гликоген и депонируется, а также используется для получения энергии. Если после этих превращений еще имеется избыток глюкозы, она превращается в жир. При голодании печень поддерживает постоянный уровень сахара в крови, прежде всего расщеплением гликогена, и если этого недостаточно – глюконеогенезом. Инсулин, проходя через печень, также оказывает влияние на уровень сахара в крови и на образование и распад гликогена в печени.

Центральную роль в превращениях углеводов и регуляции углеводного обмена играет глюкозо-6-фосфат. В печени он резко замедляет расщепление гликогена и активирует ферментативный перенос глюкозы с УДФ-глюкозы на молекулу синтезируемого гликогена. Глюкозо-6-фосфат является субстратом для аэробного и анаэробного гликолиза, приводящих к образованию пировиноградной и молочной кислот. Этот процесс обеспечивает организм субстратами для биосинтезов и играет важную роль в обмене энергии. При окислении глюкозо-6-фосфата в пентозофосфатном пути образуется НАДФН, который используется для восстановительных синтезов жирных кислот и холестерина. Продуктом ПФП являются также фосфопентозы – обязательный компонент нуклеотидов и нуклеиновых кислот. Наконец, расщепление глюкозо-6-фосфата обеспечивает поступление в кровь свободной глюкозы, доставляемой током крови во все органы и ткани.

В печени активно протекает глюконеогенез, при котором предшественниками глюкозы являются пируват, аланин (поступающий из мышц), глицерин (из жировой ткани) и ряд гликогенных аминокислот (поступающих с пищей).

Высокие концентрации АТФ и цитрата тормозят гликолиз путем аллостерической регуляции фермента фосфофруктокиназы.АТФ тормозит пируваткиназу. Ингибитором пируваткиназы является ацетил-КоА. Все эти метаболиты образуются при распаде глюкозы (торможение конечным продуктом). АМФ активирует расщепление гликогена и тормозит глюконеогенез.

Важную роль в обмене веществ в печени играет фруктозо-2,6-дифосфат. Он образуется в незначительных количествах из фруктозо-6-фосфата и выполняет регуляторную функцию: стимулирует гликолиз путем активации фосфофруктокиназы и подавляет глюконеогенез с помощью торможения фруктозо-1,6-дифосфатазы.

При ряде патологических состояний, в частности при сахарном диабете, нарушаются функционирование и регуляция системы фруктозо-2,6-дифосфата. Так, при экспериментальном диабете у крыс содержание в гепатоцитах фруктозо-2,6-дифосфата снижено. Увеличение концентрации глюкагона и уменьшение содержания инсулина обусловливают повышение концентрации цАМФ в ткани печени и усиление цАМФ-зависимого фосфорилирования бифункционального фермента, что приводит к снижению его киназной и повышению бисфосфатазной активности. Следовательно, снижается скорость гликолиза и усиливается глюконеогенез.

Дата добавления: 2015-07-04 ; просмотров: 770 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

источник

Функции печени.

Печень является органом, занимающим уникальное место в обмене веществ. В каждой печёночной клетке содержится несколько тысяч ферментов, катализирующих реакции многочисленных метаболических путей. Поэтому печень выполняет в организме целый ряд метаболических функций. Важнейшими из них являются:

— биосинтез веществ, которые функционируют или используются в других органах. К этим веществам относятся белки плазмы крови, глюкоза, липиды, кетоновые тела и многие другие соединения;

-биосинтез конечного продукта азотистого обмена в организме — мочевины;

— участие в процессах пищеварения — синтез желчных кислот, образование и экскреция желчи;

— биотрансформация (модификация и конъюгация) эндогенных метаболитов, лекарственных препаратов и ядов;

-выделение некоторых продуктов метаболизма (желчные пигменты, избыток холестерола, продукты обезвреживания).

Роль печени в обмене углеводов.

Основная роль печени в обмене углеводов заключается в поддержании постоянного уровня глюкозы в крови. Это осуществляется путём регуляции соотношения процессов образования и утилизации глюкозы в печени.

В клетках печени содержится фермент глюкокиназа , катализирующий реакцию фосфорилирования глюкозы с образованием глюкозо-6-фосфата. Глюкозо-6-фосфат является ключевым метаболитом углеводного обмена; основные пути его превращения представлены на рисунке 1.

31.2.1. Пути утилизации глюкозы. После приёма пищи большое количество глюкозы поступает в печень по воротной вене. Эта глюкоза используется прежде всего для синтеза гликогена (схема реакций приводится на рисунке 2). Содержание гликогена в печени здоровых людей обычно составляет от 2 до 8% массы этого органа.

Гликолиз и пентозофосфатный путь окисления глюкозы в печени служат в первую очередь поставщиками метаболитов-предшественников для биосинтеза аминокислот, жирных кислот, глицерола и нуклеотидов. В меньшей степени окислительные пути превращения глюкозы в печени являются источниками энергии для обеспечения биосинтетических процессов.

Рисунок 1. Главные пути превращения глюкозо-6-фосфата в печени. Цифрами обозначены: 1 — фосфорилирование глюкозы; 2 — гидролиз глюкозо-6-фосфата; 3 — синтез гликогена; 4 — мобилизация гликогена; 5 — пентозофосфатный путь; 6 — гликолиз; 7 — глюконеогенез.

Рисунок 2. Схема реакций синтеза гликогена в печени.

Рисунок 3. Схема реакций мобилизации гликогена в печени.

31.2.2. Пути образования глюкозы. В некоторых условиях (при голодании низкоуглеводной диете, длительной физической нагрузке) потребность организма в углеводах превышает то количество, которое всасывается из желудочно-кишечного тракта. В таком случае образование глюкозы осуществляется с помощью глюкозо-6-фосфатазы , катализирующей гидролиз глюкозо-6-фосфата в клетках печени. Непосредственным источником глюкозо-6-фосфата служит гликоген. Схема мобилизации гликогена представлена на рисунке 3.

Мобилизация гликогена обеспечивает потребности организма человека в глюкозе на протяжении первых 12 — 24 часов голодания. В более поздние сроки основным источником глюкозы становится глюконеогенез — биосинтез из неуглеводных источников.

Основными субстратами для глюконеогенеза служат лактат, глицерол и аминокислоты (за исключением лейцина). Эти соединения сначала превращаются в пируват или оксалоацетат — ключевые метаболиты глюконеогенеза.

Глюконеогенез — процесс, обратный гликолизу. При этом барьеры, создаваемые необратимыми реакциями гликолиза, преодолеваются при помощи специальных ферментов, катализирующих обходные реакции (см. рисунок 4).

Из других путей обмена углеводов в печени следует отметить превращение в глюкозу других пищевых моносахаридов — фруктозы и галактозы.

Рисунок 4. Гликолиз и глюконеогенез в печени.

Ферменты, катализирующие необратимые реакции гликолиза: 1 — глюкокиназа; 2 — фосфофруктокиназа; 3 — пируваткиназа.

Ферменты, катализирующие обходные реакции глюконеогенеза: 4 -пируваткарбоксилаза; 5 — фосфоенолпируваткарбоксикиназа; 6 -фруктозо-1,6-дифосфатаза; 7 — глюкозо-6-фосфатаза.

Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: Как то на паре, один преподаватель сказал, когда лекция заканчивалась — это был конец пары: «Что-то тут концом пахнет». 8186 — | 7873 — или читать все.

85.95.189.26 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам | Обратная связь.

Отключите adBlock!
и обновите страницу (F5)

очень нужно

источник

Роль печени в углеводном обмене

Основная роль печени в углеводном обмене заключается в поддержании нормального содержания глюкозы в крови – т. е. в регуляции нормогликемии.

Это достигается за счет нескольких механизмов.

1. Наличие в печени фермента глюкокиназы. Глюкокиназа, подобно гексокиназе, фосфорилирует глюкозу до глюкозо-6-фосфата. Следует отметить, что глюкокиназа в отличие от гексокиназы, содержится, только в печени и ?-клетках островков Лангерганса. Активность глюкокиназы в печени в 10 раз превышает активность гексокиназы. Кроме того, глюкокиназа в противоположность гексокиназе имеет более высокое значение Кm для глюкозы (т. е. меньшее сродство к глюкозе).

После приема пищи содержание глюкозы в воротной вене резко возрастает и достигает 10 ммоль/л и более. Повышение концентрации глюкозы в печени вызывает существенное увеличение активности глюкокиназы и увеличивает поглощение глюкозы печенью. Благодаря синхронной работе гексокиназы и глюкокиназы печень быстро и эффективно фосфорилирует глюкозу до глюкозо-6-фосфата, обеспечивая нормогликемию в системе общего кровотока. Далее глюкозо-6-фосфат может метаболизироваться по нескольким направлениям (рис. 28.1).

2. Синтез и распад гликогена. Гликоген печени выполняет роль депо глюкозы в организме. После приема пищи избыток углеводов откладывается в печени в виде гликогена, уровень которого составляет примерно 6 % от массы печени (100–150 г). В промежутках между приемами пищи, а также в период «ночного голодания» пополнения пула глюкозы в крови за счет всасывания из кишечника не происходит. В этих условиях активируется распад гликогена до глюкозы, что поддерживает уровень гликемии. Запасы гликогена истощаются к концу 1-х суток голодания.

3. В печени активно протекает глюконеогенез – синтез глюкозы из неуглеводных предшественников (лактат, пируват, глицерол, гликогенные аминокислоты). Благодаря глюконеогенезу в организме взрослого человека образуется примерно 70 г глюкозы в сутки. Активность глюконеогенеза резко возрастает при голодании на 2-е сутки, когда запасы гликогена в печени исчерпаны.

Благодаря глюконеогенезу печень участвует в цикле Кори – процессе превращения молочной кислоты, образующейся в мышцах, в глюкозу.

4. В печени осуществляется превращение фруктозы и галактозы в глюкозу.

5. В печени происходит синтез глюкуроновой кислоты.

Рис. 28.1. Участие глюкозо-6-фосфата в метаболизме углеводов

источник

Печень в организме человека выполняет целый ряд разнообразных и жизненно важных функций. Печень участвует практически во всех видах обмена: белковом, липидном, углеводном, водно-минеральном, пигментном.

Важнейшее значение печени в обмене веществ в первую очередь определяется тем, что она является как бы большой промежуточной станцией между портальным и общим кругом кровообращения. В печень человека более 70% крови поступает через воротную вену, остальная кровь попадает через печеночную артерию. Кровь воротной вены омывает всасывающую поверхность кишечника, и в результате большая часть веществ, всасывающихся в кишечнике, проходит через печень (кроме липидов, транспорт которых в основном осуществляется через лимфатическую систему). Таким образом, печень функционирует как первичный регулятор содержания в крови веществ, поступающих в организм с пищей.

Доказательством справедливости данного положения является следующий общий факт: несмотря на то что всасывание питательных веществ из кишечника в кровь происходит прерывисто, непостоянно, в связи с чем в портальном круге кровообращения могут наблюдаться изменения концентрации ряда веществ (глюкоза, аминокислоты и др.), в общем круге кровообращения изменения в концентрации указанных соединений незначительны. Все это подтверждает важную роль печени в поддержании постоянства внутренней среды организма.

Печень выполняет также крайне важную экскреторную функцию, теснейшим образом связанную с ее детоксикационной функцией. В целом без преувеличения можно констатировать, что в организме нет путей обмена веществ, которые прямо или косвенно не контролировались бы печенью, в связи с чем многие важнейшие функции печени уже рассматривались в соответствующих главах учебника. В данной главе будет сделана попытка дать обобщающие представления о роли печени в обмене веществ целостного организма.

ХИМИЧЕСКИЙ СОСТАВ ПЕЧЕНИ

У взрослого здорового человека масса печени составляет в среднем 1,5 кг. Некоторые исследователи считают, что эту величину следует рассматривать как нижнюю границу нормы, а диапазон колебаний от 20 до 60 г на 1 кг массы тела. В табл. представлены некоторые данные о химическом составе печени в норме. Из данных табл. видно, что более 70% от массы печени составляет вода. Однако следует помнить, что масса печени и ее состав подвержены значительным колебаниям как в норме, так и особенно при патологических состояниях.

Например, при отеках количество воды может составлять до 80% от массы печени, а при избыточном отложении жира в печени – снизиться до 55%. Более половины сухого остатка печени приходится на долю белков, причем примерно 90% из них – на глобулины. Печень богата различными ферментами. Около 5% от массы печени составляют липиды: нейтральные жиры (триглицериды), фосфолипиды, холестерин и др. При выраженном ожирении содержание липидов может достигать 20% от массы органа, а при жировом перерождении печени количество липидов может составлять 50% от сырой массы.

В печени может содержаться 150–200 г гликогена. Как правило, при тяжелых паренхиматозных поражениях печени количество гликогена в ней уменьшается. Напротив, при некоторых гликогенозах содержание гликогена достигает 20% и более от массы печени.

Разнообразен и минеральный состав печени. Количество железа, меди, марганца, никеля и некоторых других элементов превышает их содержание в других органах и тканях.

ПЕЧЕНЬ В УГЛЕВОДНОМ ОБМЕНЕ

Основная роль печени в углеводном обмене заключается в обеспечении постоянства концентрации глюкозы в крови. Это достигается регуляцией между синтезом и распадом гликогена, депонируемого в печени.

Участие печени в поддержании концентрации глюкозы в крови определяется тем, что в ней протекают процессы гликогенеза, гликогенолиза, гликолиза и глюконеогенеза. Эти процессы регулируются многими гормонами, в том числе инсулином, глюкагоном, СТГ, глюкокортикоидами и катехоламинами. Поступающая в кровь глюкоза быстро захватывается печенью. Считают, что это обусловлено исключительно высокой чувствительностью гепатоцитов к инсулину (хотя есть данные, заставляющие усомниться в важности этого механизма).

При голодании снижается уровень инсулина и повышаются уровни глюкагона и кортизола. В ответ на это в печени усиливаются гликогенолиз и глюконеогенез. Для глюконеогенеза необходимы аминокислоты, особенно аланин, которые образуются при распаде мышечных белков. Напротив, после приема пищи аланин и разветвленные аминокислоты поступают из печени в мышцы, где участвуют в синтезе белков. Этот глюкозо-аланиновый цикл регулируется изменениями сывороточных концентраций инсулина, глюкагона и кортизола.

Предполагалось, что после приема пищи гликоген и жирные кислоты синтезируются прямо из глюкозы. Однако на самом деле эти превращения происходят непрямым путем с участием трикарбоновых метаболитов глюкозы (например, лактата ) или других субстратов глюконеогенеза, таких, как фруктоза и аланин.

При циррозе печени часто изменяется уровень глюкозы в крови. Обычно наблюдаются гипергликемия и нарушение толерантности к глюкозе. При этом активность инсулина в крови нормальна или повышена (за исключением гемохроматоза); следовательно, нарушение толерантности к глюкозе обусловлено инсулинорезистентностью. Ее причиной может быть снижение числа функционирующих гепатоцитов.

Есть также данные, что при циррозе печени наблюдается рецепторная и пострецепторная инсулинорезистентность гепатоцитов. Кроме того, при портокавальном шунтировании уменьшается печеночная элиминация инсулина и глюкагона, поэтому концентрация этих гормонов повышается. Однако при гемохроматозе уровень инсулина может снижаться (вплоть до развития сахарного диабета ) из-за отложения железа в поджелудочной железе . При циррозе способность печени использовать лактат в реакциях глюконеогенеза снижается, в результате его концентрация в крови может возрасти.

Хотя гипогликемия наиболее часто возникает при молниеносном гепатите , она может развиться и на конечных стадиях цирроза печени — вследствие снижения запаса гликогена в печени, уменьшения реакции гепатоцитов на глюкагон, понижения способности печени синтезировать гликоген из-за обширного разрушения клеток. Это усугубляется тем, что количество гликогена в печени даже в норме ограничено (около 70 г), организму же необходимо постоянное поступление глюкозы (около 150 г/сут). Поэтому запасы гликогена в печени истощаются очень быстро (в норме — уже после первого дня голодания).

В печени синтез гликогена и его регуляция в основном аналогичны тем процессам, которые протекают в других органах и тканях, в частности в мышечной ткани. Синтез гликогена из глюкозы обеспечивает в норме временный резерв углеводов, необходимый для поддержания концентрации глюкозы в крови в тех случаях, если ее содержание значительно уменьшается (например, у человека это происходит при недостаточном поступлении углеводов с пищей или в период ночного «голодания»).

Необходимо подчеркнуть важную роль фермента глюкокиназы в процессе утилизации глюкозы печенью. Глюкокиназа, подобно гексокиназе, катализирует фосфорилирование глюкозы с образованием глюкозо-фосфата, при этом активность глюкокиназы в печени почти в 10 раз превышает активность гексокиназы. Важное различие между этими двумя ферментами заключается в том, что глюкокиназа в противоположность гексокиназе имеет высокое значение КМ для глюкозы и не ингибируется глюкозо-6-фосфатом.

После приема пищи содержание глюкозы в воротной вене резко возрастает: в тех же пределах увеличивается и ее внутрипеченочная концентрация. Повышение концентрации глюкозы в печени вызывает существенное увеличение активности глюкокиназы и автоматически увеличивает поглощение глюкозы печенью (образовавшийся глюкозо-6-фосфат либо затрачивается на синтез гликогена, либо расщепляется).

Считают, что основная роль печени – расщепление глюкозы – сводится прежде всего к запасанию метаболитов-предшественников, необходимых для биосинтеза жирных кислот и глицерина, и в меньшей степени к окислению ее до СО2 и Н2О. Синтезированные в печени триглицериды в норме выделяются в кровь в составе липопротеинов и транспортируются в жировую ткань для более «постоянного» хранения.

В реакциях пентозофосфатного пути в печени образуется НАДФН, используемый для восстановительных реакций в процессах синтеза жирных кислот, холестерина и других стероидов. Кроме того, при этом образуются пентозофосфаты, необходимые для синтеза нуклеиновых кислот.

Наряду с утилизацией глюкозы в печени происходит и ее образование. Непосредственным источником глюкозы в печени служит гликоген. Распад гликогена в печени происходит в основном фосфоролитическим путем. В регуляции скорости гликогенолиза в печени большое значение имеет система циклических нуклеотидов. Кроме того, глюкоза в печени образуется также в процессе глюконеогенеза.

Основными субстратами глюконеогенеза служат лактат, глицерин и аминокислоты. Принято считать, что почти все аминокислоты, за исключением лейцина, могут пополнять пул предшественников глюконеогенеза.

При оценке углеводной функции печени необходимо иметь в виду, что соотношение между процессами утилизации и образования глюкозы регулируется прежде всего нейрогуморальным путем при участии желез внутренней секреции.

Центральную роль в превращениях глюкозы и саморегуляции углеводного обмена в печени играет глюкозо-6-фосфат. Он резко тормозит фосфоролитическое расщепление гликогена, активирует ферментативный перенос глюкозы с уридиндифосфоглюкозы на молекулу синтезирующегося гликогена, является субстратом для дальнейших гликолитических превращений, а также окисления глюкозы, в том числе по пентозофосфатному пути. Наконец, расщепление глюкозо-6-фосфата фосфатазой обеспечивает поступление в кровь свободной глюкозы, доставляемой током крови во все органы и ткани (рис. 16.1).

Как отмечалось, наиболее мощным аллостерическим активатором фосфофруктокиназы-1 и ингибитором фруктозо-1,6-бисфосфатазы печени является фруктозо-2,6-бисфосфат (Ф-2,6-Р2). Повышение в гепатоцитах уровня Ф-2,6-Р2 способствует усилению гликолиза и уменьшению скорости глюконеогенеза. Ф-2,6-Р2 снижает ингибирующее действие АТФ на фосфо-фруктокиназу-1 и увеличивает сродство этого фермента к фруктозо-6-фосфату. При ингибировании фруктозо-1,6-бисфосфатазы Ф-2,6-Р2 возрастает значение КМ для фруктозо-1,6-бисфосфата.

Содержание Ф-2,6-Р2 в печени, сердце, скелетной мускулатуре и других тканях контролируется бифункциональным ферментом, который осуществляет синтез Ф-2,6-Р2 из фруктозо-6-фосфата и АТФ и гидролиз его до фруктозо-6-фосфата и Pi, т.е. фермент одновременно обладает и киназной, и бисфосфатазной активностью. Бифункциональный фермент (фосфофруктокиназа-2/фруктозо-2,6-бисфосфатаза), выделенный из печени крысы, состоит из двух идентичных субъединиц с мол. массой 55000, каждая из которых имеет два различных каталитических центра. Киназный домен при этом расположен на N-конце, а бисфосфатазный – на С-конце каждой из полипептидных цепей.

Известно также, что бифункциональный фермент печени является прекрасным субстратом для цАМФ-зависимой протеинкиназы А. Под действием про-теинкиназы А происходит фосфорилирование остатков серина в каждой из субъединиц бифункционального фермента, что приводит к снижению его киназной и повышению бисфосфатазной активности. Заметим, что в регуляции активности бифункционального фермента существенная роль принадлежит гормонам, в частности глюкагону.

При многих патологических состояниях, в частности при сахарном диабете, отмечаются существенные изменения в функционировании и регуляции системы Ф-2,6-Р2. Установлено, что при экспериментальном (стептозотоциновом) диабете у крыс на фоне резкого увеличения уровня глюкозы в крови и моче в гепатоцитах содержание Ф-2,6-Р2 снижено. Следовательно, снижается скорость гликолиза и усиливается глюконео-генез. Данный факт имеет свое объяснение.

Возникающие у крыс при диабете нарушения гормонального фона: увеличение концентрации глю-кагона и уменьшение содержания инсулина – обусловливают повышение концентрации цАМФ в ткани печени, усиление цАМФ-зависимого фосфорилирования бифункционального фермента, что в свою очередь приводит к снижению его киназной и повышению бисфосфатазной активности. Таков может быть механизм снижения уровня Ф-2,6-Р2 в гепатоцитах при экспериментальном диабете. По-видимому, существуют и другие механизмы, ведущие к снижению уровня Ф-2,6-Р2 в гепатоцитах при стрептозото-циновом диабете. Показано, что при экспериментальном диабете в ткани печени имеет место снижение активности глюкокиназы (возможно, и снижение количества данного фермента).

Это приводит к падению скорости фосфорилирования глюкозы, а затем к снижению содержания фруктозо-6-фосфата – субстрата бифункционального фермента. Наконец, в последние годы было показано, что при стрептозотоциновом диабете уменьшается количество мРНК бифункционального фермента в гепатоцитах и как следствие – снижается уровень Ф-2,6-Р2 в ткани печени, усиливается глюко-неогенез. Все это еще раз подтверждает положение, что Ф-2,6-Р2, являясь важным компонентом в цепи передачи гормонального сигнала, выступает в роли третичного посредника при действии гормонов, прежде всего на процессы гликолиза и глюконеогенеза.

Рассматривая промежуточный обмен углеводов в печени, необходимо также остановиться на превращениях фруктозы и галактозы. Поступающая в печень фруктоза может фосфорилироваться в положении 6 до фруктозо-6-фосфата под действием гексокиназы, обладающей относительной специфичностью и катализирующей фосфорилирование, кроме глюкозы и фруктозы, еще и маннозы. Однако в печени существует и другой путь: фруктоза способна фосфорилироваться при участии более специфического фермента – фруктокиназы. В результате образуется фруктозо-1-фосфат.

Эта реакция не блокируется глюкозой. Далее фруктозо-1-фосфат под действием альдолазы расщепляется на две триозы: диоксиацетонфосфат и глицераль-дегид. Под влиянием соответствующей киназы (триокиназы) и при участии АТФ глицеральдегид подвергается фосфорилированию до глицеральдегид-3-фосфата. Последний (в него легко переходит и диоксиацетонфосфат) подвергается обычным превращениям, в том числе с образованием в качестве промежуточного продукта пировиноградной кислоты.

Следует отметить, что при генетически обусловленной нетолерантности к фруктозе или недостаточной активности фруктозо-1,6-бисфосфатазы наблюдается индуцируемая фруктозой гипогликемия, возникающая вопреки наличию больших запасов гликогена. Вероятно, фруктозо-1-фосфат и фруктозо-1,6-бисфосфат ингибируют фосфорилазу печени по аллосте-рическому механизму.

Известно также, что метаболизм фруктозы по гликолитическому пути в печени происходит гораздо быстрее, чем метаболизм глюкозы. Для метаболизма глюкозы характерна стадия, катализируемая фосфофрукто-киназой-1. Как известно, на этой стадии осуществляется метаболический контроль скорости катаболизма глюкозы. Фруктоза минует эту стадию, что позволяет ей интенсифицировать в печени процессы метаболизма, ведущие к синтезу жирных кислот, их эстерификацию и секрецию липопротеинов очень низкой плотности; в результате может увеличиваться концентрация триглицеридов в плазме крови.

Галактоза в печени сначала фосфорилируется при участии АТФ и фермента галактокиназы с образованием галактозо-1-фосфата. Для га-лактокиназы печени плода и ребенка характерны значения КМ и Vмaкс, примерно в 5 раз превосходящие таковые у ферментов взрослого человека. Большая часть галактозо-1-фосфата в печени превращается в ходе реакции, катализируемой гексозо-1-фосфат-уридилилтрансферазой:

УДФ-глюкоза + Галактозо-1-фосфат –> УДФ-галактоза + Глюкозо-1-фосфат.

Это уникальная трансферазная реакция возвращения галактозы в основное русло углеводного метаболизма. Наследственная утрата гексозо-1-фосфат-уридилилтрансферазы приводит к галактоземии – заболеванию, для которого характерны умственная отсталость и катаракта хрусталика. В этом случае печень новорожденных теряет способность метаболизи-ровать D-галактозу, входящую в состав лактозы молока.

РОЛЬ ПЕЧЕНИ В ЛИПИДНОМ ОБМЕНЕ

Ферментные системы печени способны катализировать все реакции или значительное большинство реакций метаболизма липидов. Совокупность этих реакций лежит в основе таких процессов, как синтез высших жирных кислот, триглицеридов, фосфолипидов, холестерина и его эфиров, а также липолиз триглицеридов, окисление жирных кислот, образование ацетоновых (кетоновых) тел и т.д. Напомним, что ферментативные реакции синтеза триглицеридов в печени и жировой ткани сходны. Так, КоА-производные жирной кислоты с длинной цепью взаимодействуют с глицерол-3-фосфатом с образованием фосфатидной кислоты, которая затем гидролизуется до диглицерида.

Путем присоединения к последнему еще одной молекулы КоА-производного жирной кислоты образуется триглицерид. Синтезированные в печени три-глицериды либо остаются в печени, либо секретируются в кровь в форме липопротеинов. Секреция происходит с известной задержкой (у человека 1–3 ч). Задержка секреции, вероятно, соответствует времени, необходимому для образования липопротеинов. Основным местом образования плазменных пре-β-липопротеинов (липопротеины очень низкой плотности – ЛПОНП) и α-липопротеинов (липопротеины высокой плотности – ЛПВП) является печень.

Рассмотрим образование ЛПОНП. Согласно данным литературы, основной белок апопротеин В-100 (апо Б-100) липопротеинов синтезируется в рибосомах шероховатого эндоплазматического ретикулума гепатоцитов. В гладком эндоплазматическом ретикулуме, где синтезируются и липидные компоненты, происходит сборка ЛПОНП. Одним из основных стимулов образования ЛПОНП является повышение концентрации неэстерифици-рованных жирных кислот (НЭЖК). Последние либо поступают в печень с током крови, будучи связанными с альбумином, либо синтезируются непосредственно в печени. НЭЖК служат главным источником образования триглицеридов (ТГ). Информация о наличии НЭЖК и ТГ передается на мембранно-связанные рибосомы шероховатого эндоплазматического ретикулума, что в свою очередь является сигналом для синтеза белка (апо В-100).

Синтезированный белок внедряется в мембрану шероховатого ретикулума, и после взаимодействия с фосфолипидным бислоем от мембраны отделяется участок, состоящий из фосфолипидов (ФЛ) и белка, который и является предшественником ЛП-частицы. Далее белокфосфо-липидный комплекс поступает в гладкий эндоплазматический ретикулум, где взаимодействует с ТГ и эстерифицированным холестерином (ЭХС), в результате чего после соответствующих структурных перестроек формируются насцентные, т.е. незавершенные, частицы (н-ЛПОНП). Последние поступают через тубулярную сеть аппарата Гольджи в секреторные везикулы и в их составе доставляются к поверхности клетки, после чего очень низкой плотности (ЛПОНП) в печеночной клетке (по А.Н. Климову и Н.Г. Никульчевой).

Путем экзоцитоза выделяются в перисинусоидные пространства (пространства Диссе). Из последнего н-ЛПОНП поступают в просвет кровяного синусоида, где происходят перенос апопротеинов С из ЛПВП на н-ЛПОНП и достраивание последних (рис. 16.3). Установлено, что время синтеза апо В-100, образования липид-белковых комплексов и секреции готовых частиц ЛПОНП составляет 40 мин.

У человека основная масса β-липопротеинов (липопротеины низкой плотности – ЛПНП) образуется в плазме крови из ЛПОНП при действии липопротеинлипазы. В ходе этого процесса образуются сначала промежуточные короткоживущие липопротеины (Пр.ЛП), а затем формируются частицы, обедненные триглицеридами и обогащенные холестерином, т.е. ЛПНП.

При высоком содержании жирных кислот в плазме их поглощение печенью возрастает, усиливается синтез триглицеридов, а также окисление жирных кислот, что может привести к повышенному образованию кетоновых тел.

Следует подчеркнуть, что кетоновые тела образуются в печени в ходе так называемого β-гидрокси-β-метилглутарил-КоА пути. Однако существует мнение, что ацетоацетил-КоА, являющийся исходным соединением при кетогенезе, может образоваться как непосредственно в ходе β-окисле-ния жирных кислот, так и в результате конденсации ацетил-КоА [Марри Р. и др., 1993]. Из печени кетоновые тела током крови доставляются в ткани и органы (мышцы, почки, мозг и др.), где они быстро окисляются при участии соответствующих ферментов, т.е. по сравнению с другими тканями печень является исключением.

В печени происходит интенсивный распад фосфолипидов, а также их синтез. Помимо глицерина и жирных кислот, которые входят в состав нейтральных жиров, для синтеза фосфолипидов необходимы неорганические фосфаты и азотистые соединения, в частности холин, для синтеза фосфатидхолина. Неорганические фосфаты в печени имеются в достаточном количестве. При недостаточном образовании или недостаточном поступлении в печень холина синтез фосфолипидов из компонентов нейтрального жира становится либо невозможным, либо резко снижается и нейтральный жир откладывается в печени. В этом случае говорят о жировой инфильтрации печени, которая может затем перейти в ее жировую дистрофию.

Иными словами, синтез фосфолипидов лимитируется количеством азотистых оснований, т.е. для синтеза фосфоглицеридов необходим либо холин, либо соединения, которые могут являться донорами метильных групп и участвовать в образовании холина (например, метионин). Такие соединения получили название липотропных веществ. Отсюда становится ясным, почему при жировой инфильтрации печени весьма полезен творог, содержащий белок казеин, в составе которого имеется большое количество остатков аминокислоты метионина.

Рассмотрим роль печени в обмене стероидов, в частности холестерина. Часть холестерина поступает в организм с пищей, но значительно большее количество его синтезируется в печени из ацетил-КоА. Биосинтез холестерина в печени подавляется экзогенным холестерином, т.е. получаемым с пищей.

Таким образом, биосинтез холестерина в печени регулируется по принципу отрицательной обратной связи. Чем больше холестерина поступает с пищей, тем меньше его синтезируется в печени, и наоборот. Принято считать, что действие экзогенного холестерина на биосинтез его в печени связано с торможением β-гидрокси-β-метилглутарил-КоА-редуктазной реакции:

Часть синтезированного в печени холестерина выделяется из организма вместе с желчью, другая часть превращается в желчные кислоты и используется в других органах для синтеза стероидных гормонов и иных соединений.

В печени холестерин может взаимодействовать с жирными кислотами (в виде ацил-КоА) с образованием эфиров холестерина. Синтезированные в печени эфиры холестерина поступают в кровь, в которой содержится также определенное количество свободного холестерина.

РОЛЬ ПЕЧЕНИ В ОБМЕНЕ БЕЛКОВ

Печень играет центральную роль в обмене белков.

Она выполняет следующие основные функции:

— синтез специфических белков плазмы;

— образование мочевины и мочевой кислоты;

— трансаминирование и дезаминирование аминокислот, что весьма важно для взаимных превращений аминокислот, а также для процесса глюконеогенеза и образования кетоновых тел.

Все альбумины плазмы, 75–90% α-глобу-линов и 50% β-глобулинов синтезируются гепатоцитами. Лишь γ-гло-булины продуцируются не гепатоцитами, а системой макрофагов, к которой относятся звездчатые ретикулоэндотелиоциты (клетки Купфера). В основном γ-глобулины образуются в печени. Печень является единственным органом, где синтезируются такие важные для организма белки, как протромбин, фибриноген, проконвертин и проакцелерин.

При заболеваниях печени определение фракционного состава белков плазмы (или сыворотки) крови нередко представляет интерес как в диагностическом, так и в прогностическом плане. Известно, что патологический процесс в гепатоцитах резко снижает их синтетические возможности. В результате содержание альбумина в плазме крови резко падает, что может привести к снижению онкотического давления плазмы крови, развитию отеков, а затем асцита. Отмечено, что при циррозах печени, протекающих с явлениями асцита, содержание альбуминов в сыворотке крови на 20% ниже, чем при циррозах без асцита.

Нарушение синтеза ряда белковых факторов системы свертывания крови при тяжелых заболеваниях печени может привести к геморрагическим явлениям.

При поражениях печени нарушается также процесс дезаминирования аминокислот, что способствует увеличению их концентрации в крови и моче. Так, если в норме содержание азота аминокислот в сыворотке крови составляет примерно 2,9–4,3 ммоль/л, то при тяжелых заболеваниях печени (атрофические процессы) эта величина возрастает до 21 ммоль/л, что приводит к аминоацидурии. Например, при острой атрофии печени количество тирозина в суточном количестве мочи может достигать 2 г (при норме 0,02–0,05 г/сут).

В организме образование мочевины в основном происходит в печени. Синтез мочевины связан с затратой довольно значительного количества энергии (на образование 1 молекулы мочевины расходуется 3 молекулы АТФ). При заболевании печени, когда количество АТФ в гепатоцитах уменьшено, синтез мочевины нарушается. Показательно в этих случаях определение в сыворотке отношения азота мочевины к аминоазоту. В норме это отношение равно 2:1, а при тяжелом поражении печени составляет 1:1.

Большая часть мочевой кислоты также образуется в печени, где много фермента ксантиноксидазы, при участии которого оксипурины (гипо-ксантин и ксантин) превращаются в мочевую кислоту. Нельзя забывать о роли печени и в синтезе креатина. Имеются два источника креатина в организме. Существует экзогенный креатин, т.е. креатин пищевых продуктов (мясо, печень и др.), и эндогенный креатин, синтезирующийся в тканях. Синтез креатина происходит в основном в печени, откуда он с током крови поступает в мышечную ткань. Здесь креатин, фосфори-лируясь, превращается в креатинфосфат, а из последнего образуется креатин.

Желчь – жидкий секрет желтовато-коричневого цвета, отделяется печеночными клетками. В сутки у человека образуется 500–700 мл желчи (10 мл на 1 кг массы тела). Желчеобразование происходит непрерывно, хотя интенсивность этого процесса на протяжении суток резко колеблется. Вне пищеварения печеночная желчь переходит в желчный пузырь, где происходит ее сгущение в результате всасывания воды и электролитов. Относительная плотность печеночной желчи 1,01, а пузырной – 1,04. Концентрация основных компонентов в пузырной желчи в 5–10 раз выше, чем в печеночной.

Предполагают, что образование желчи начинается с активной секреции гепатоцитами воды, желчных кислот и билирубина, в результате которой в желчных канальцах появляется так называемая первичная желчь. Последняя, проходя по желчным ходам, вступает в контакт с плазмой крови, вследствие чего между желчью и плазмой устанавливается равновесие электролитов, т.е. в образовании желчи принимают участие в основном два механизма – фильтрация и секреция.

В печеночной желчи можно выделить две группы веществ. Первая группа – это вещества, которые присутствуют в желчи в количествах, мало отличающихся от их концентрации в плазме крови (например, ионы Na+, К+, креатин и др.), что в какой-то мере служит доказательством наличия фильтрационного механизма. Ко второй группе относятся соединения, концентрация которых в печеночной желчи во много раз превышает их содержание в плазме крови (билирубин, желчные кислоты и др.), что свидетельствует о наличии секреторного механизма. В последнее время появляется все больше данных о преимущественной роли активной секреции в механизме желчеобразования. Кроме того, в желчи обнаружен ряд ферментов, из которых особо следует отметить щелочную фосфатазу печеночного происхождения. При нарушении оттока желчи активность данного фермента в сыворотке крови возрастает.

Основные функции желчи. Эмульсификация. Соли желчных кислот обладают способностью значительно уменьшать поверхностное натяжение. Благодаря этому они осуществляют эмульгирование жиров в кишечнике, растворяют жирные кислоты и нерастворимые в воде мыла. Нейтрализация кислоты. Желчь, рН которой немногим более 7,0, нейтрализует кислый химус, поступающий из желудка, подготавливая его для переваривания в кишечнике. Экскреция. Желчь – важный носитель экскрети-руемых желчных кислот и холестерина. Кроме того, она удаляет из организма многие лекарственные вещества, токсины, желчные пигменты и различные неорганические вещества, такие, как медь, цинк и ртуть. Растворение холестерина. Как отмечалось, холестерин, подобно высшим жирным кислотам, представляет собой нерастворимое в воде соединение, которое сохраняется в желчи в растворенном состоянии лишь благодаря присутствию в ней солей желчных кислот и фосфатидилхолина.

При недостатке желчных кислот холестерин выпадает в осадок, при этом могут образовываться камни. Обычно камни имеют окрашенное желчным пигментом внутреннее ядро, состоящее из белка. Чаще всего встречаются камни, у которых ядро окружено чередующимися слоями холестерина и билирубината кальция. Такие камни содержат до 80% холестерина. Интенсивное образование камней отмечается при застое желчи и наличии инфекции. При застое желчи встречаются камни, содержащие 90–95% холестерина, а при инфекции могут образовываться камни, состоящие из билирубината кальция. Принято считать, что присутствие бактерий сопровождается увеличением β-глюкуронидазной активности желчи, что приводит к расщеплению конъюгатов билирубина; освобождающийся билирубин служит субстратом для образования камней.

Не нашли то, что искали? Воспользуйтесь поиском:

источник